QMSim User's Guide

Version 2.0 (Last update: June 11, 2019)

University of Guelph & HiggsGene Solutions Inc. Guelph, Canada

Mehdi Sargolzaei & Flavio Schenkel June 2019

Disclaimer

This document describes the use of QMSim software. The software is provided "AS IS" without warranty of any kind solely for academic use. The authors and their organizations accept no responsibility for the accuracy of results obtained by using QMSim software.

Please notify <u>msargol@uoguelph.ca</u> or <u>hgs.msargolzaei@gmail.com</u> upon the discovery of errors.

Citing QMSim

If you publish results obtained by using QMSim, you are required to acknowledge this by citing the program as follows:

Sargolzaei, M. and F. S. Schenkel. 2009. QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25: 680-681. First published January 28, 2009, doi:10.1093 /bioinformatics/btp045.

Introduction

Linkage disequilibrium (LD) and linkage analyses have been extensively used to identify quantitative trait loci (QTL) in human and livestock species. Recently, interest in whole genome fine mapping and especially genome-wide selection has grown as a result of the dramatic increase in the number of known single nucleotide polymorphisms (SNP) and the decrease in genotyping costs. The access to dense marker maps has opened up the possibility for new approaches for fine mapping and genome wide selection. However, even though genotyping costs have substantially decreased, large scale genome-wide association studies are still costly. For this reason most of studies suffer from small sample sizes or from low marker density. Simulation is a highly valuable tool for assessing and validating proposed methods for QTL mapping and genome wide selection at very low cost, allowing also for the prediction of future changes in genetic parameters. During the last few decades, simulation has played a major role in population genetics and genomics.

Simulating and analyzing livestock genomic data differ in several aspects from analyses carried out in humans. For instance, in livestock a common strategy for detecting QTL is either to use multigenerational pedigrees, large family sizes, in which artificial insemination is practiced, or to design a crossbreeding program, such as F2 and back crosses (Andersson, 2001). More importantly, human populations have been experiencing an expansion in effective population size (Ne), while Ne in livestock populations has decreased. Consequently LD in livestock extends over longer distances than in humans. Moreover, combined LD and linkage QTL mapping has attracted more attention in livestock due to strong family structure (Meuwissen et al., 2002). Therefore, the population structure is crucial to identify and correctly interpret the associations between molecular and phenotypic diversity (Pritchard and Rosenberg 1999; Buckler and Thornsberry 2002).

QMSim was designed to simulate a wide range of genetic architectures and population structures in livestock. Large scale genotyping data and complex pedigrees can be efficiently simulated. Simulation is basically carried out in two steps. In the first step, historical generations are simulated to create desirable level of LD and, in the second step, recent population structures are generated, which can be very complex. QMSim allows for a wide range of parameters to be incorporated in the simulation models in order to produce appropriate simulation data.

In order to create initial LD and to establish mutation-drift equilibrium, a historical population can be simulated by considering only two evolutionary forces: mutation and drift. Mutation constantly introduces new variation and genetic drift shifts the variation to fixation. Here, the mating system is based on the union of gametes randomly sampled from the male and female gametic pools. After generating historical generations, the recent populations are simulated. Expansion and contraction of both historical and recent populations are allowed. In the recent generations selection and culling can be implemented based on different criteria such as phenotypes, true genetic values and estimated breeding values for single trait with predefined heritability and phenotypic variance. Estimated breeding values may be generated using four different approaches: 1) Best linear unbiased prediction (BLUP) via an animal model, 2) based on predefined accuracy, 3) approximated based on the number of offspring with record and 4) breeding values for each generation can be externally estimated by any method and then be inputted to QMSim. Mating design can be random, assortative (positive or negative) or optimized to minimize or maximize inbreeding. The mating design that maximizes inbreeding allows one to quickly create an inbred line. Optimization of inbreeding is carried out using simulated Annealing method (Sonesson and Meuwissen, 2000). The program can simulate sex limited traits, such as milk production. Owing to the object-oriented programming, it is easy to simulate multiple populations with different structures and selection criteria. QMSim has flexibility in simulating wide range of population structures. For example, in livestock, some of QTL mapping designs involve line crosses produced from inbred lines with divergent phenotypes. In this case, the associated mutations are expected to have high frequencies in opposite directions. Another example is simulation of two lines coming from the same base population to assess accuracy of genomic breeding values for a particular genomic evaluation method. Here, one line can be treated as training set and the other one as validation set. These scenarios can readily be simulated by QMSim.

A wide range of parameters can be specified for simulating the genome, such as: mutation rate, crossover interference, number of chromosomes, markers and QTL, location of markers and QTL, number of alleles, allelic frequencies, allelic effects, missing marker rate, and genotyping error rate. This flexibility permits for a wide variety of genetic architectures to be considered. No allelic effects are simulated for markers, so they are treated as neutral. For QTL, additive allelic effects can be sampled from gamma, normal or uniform distributions. Alternatively, predefined relative additive variance for each QTL can be supplied by the user.

One important aspect of genome simulation is to model the recombination appropriately to produce realistic level of LD, given the recent and past population structures. QMSim models crossover process, using a Poisson model. This is done by sampling the number of crossovers from a Poisson distribution and then the crossovers are located randomly across the chromosome. Because the input map is in centiMorgan it is straightforward to take into account the pattern of recombination hotspots and coldspots along the genome by adjusting the distances between markers. Moreover a simple algorithm is applied to account for crossover interference. To establish mutation-drift equilibrium in the historical generations either infinite-allele mutation model or recurrent mutation model is used. The infinite-allele mutation model assumes that a mutation creates a new allele, while the recurrent mutation model assumes that a mutation alters an allelic state to another and does not create a new allele. In the recurrent model, transition probabilities from one allelic state to another are assumed equal. Different mutation rates for markers and QTL can be specified. Effect of mutant QTL alleles can be drawn from gamma, normal or uniform distribution. The number of mutations is sampled from a Poisson distribution and it is assumed that mutation rates are equal for all loci within markers and within QTL.

The most important parameters affecting CPU time and memory are the number of loci (markers and QTL) and population size. However, depending on the simulation scenario, other parameters such as high mutation rate, calculation of LD for dense marker panels, calculation of inbreeding, saving huge outputs, etc might become a computational bottleneck. QMSim provides the user with enough options to manage the outputs or turn off unwanted computations. For example, one may optionally save genotypes for last few generations avoiding large outputs.

QMSim has two simulation modes (8-bit and 16-bit). The 8-bit mode (default) allows for maximum 255 alleles per locus while 16-bit mode allows for maximum 65,535 alleles per locus. The 16-bit mode might be useful for specific scenarios such as one where unique alleles for each founder are to be simulated.

QMSim main features:

- ✓ Simulates historical generations to establish mutation-drift equilibrium and create linkage disequilibrium.
- ✓ Recombination is appropriately modeled. Interference is allowed.
- ✓ Multiple chromosomes, each with different or similar density of markers and QTL maps, can be generated.
- \checkmark Very dense marker map and also sequence data can be simulated.
- ✓ Missing genotypes and genotyping errors can be simulated.
- ✓ Markers can be either SNP or microsatellites.
- \checkmark Males and females can have different genome length in cM.
- ✓ Unbalanced sex ratio is also allowed in historical populations.
- ✓ Additive QTL effects can be simulated with different distributions, such as gamma, normal or uniform.
- ✓ In addition to QTL effects, polygenic effect can be included.
- ✓ After mutation-drift equilibrium, polymorphic marker panel with pre-defined MAF threshold and QTL can be selected.
- ✓ 16-bit mode allows for assigning unique alleles to each founder.
- ✓ Complete linkage disequilibrium in the first historical generation can be generated.
- ✓ Calculates LD decay in specified generations.
- ✓ Population expansion or bottleneck is allowed for both historical and recent populations.
- ✓ Selection and culling of breeding population can be carried out based on different criteria, such as phenotypes, estimated breeding values (can be calculated and inputted by the user) and true breeding values.

- \checkmark More than one litter size with predefined probabilities can be considered.
- Multiple recent populations or lines can be simulated. Crossing between populations or lines is allowed.
- ✓ Multiple populations can be analyzed jointly for estimating breeding values and computing inbreeding.
- ✓ Creates detailed output files. Outputs can be customized to avoid saving unnecessary data.
- ✓ Equipped with fast and high-quality pseudo-random number generators.
- ✓ Computationally efficient.

Computing environment:

The code is written in C++ language using object oriented techniques and the application runs on Windows and Linux platforms.

Download:

The executable files are available for Windows and Linux at http://www.aps.uoguelph.ca/~msargol/qmsim/

Input parameter file

The program requires a parameter file, in which various parameters for the simulation should be specified. The input parameter file must be in ASCII format. The C++ like comments can be used to add descriptive anywhere in the parameter file. The parameter file consists of five main sections. The first part describes global parameters, the second part describes the historical population, the third part describes parameters for subpopulations and generations, the fourth part contains genome parameters and the fifth part is related to the output options. The order of commands within each section is not normally important. All commands end with a semicolon. Failure to include the semicolon will cause an error message and program exits.

1- GLOBAL PARAMETERS SECTION:

Description:	Set a title.	
Usage:	<pre>title = "string";</pre>	
	string	indicates an arbitrary title.
Type:	Optional	
Default:	None	

seed

Description:	Set a user-specifi	ed seed.
Usage:	seed = "filename"	
	filename	indicates a seed file name.
Type:	Optional	
Default:	"seed"	
Note:		

Initialization of the random number generator requires a seed. If seed file is not specified, the random number generator will be seeded from the system clock. For each run the initial seed numbers will be backed up in output folder. This allows one to generate the same simulated data. Therefore, one can backup only the seed file instead of backing up whole data and, if needed, generate the same data set in the future or on a remote system with the same version of the software as the one the seed number was generated. At beginning of each run initial seed numbers are written in "seed.prv". For next run, the seed derived from the system clock will be compared with "seed.prv" to ensure that the same seed is not used. "seed.prv" file can be accessed by only one process at a time, therefore if two jobs are started at the same time and in the same folder they will be seeded with different seed. The Mersenne Twister algorithm, which is a high-quality fast random number generator, is used to generate random numbers (Matsumoto and Nishimura, 1998).

nthread	
Description:	Number of threads for parallel processing.
Usage:	nthread = value;
-	value is the number of threads.
	Range: $1 - 200$
Type:	Optional
Default:	Auto
Note:	Number of CPUs is automatically detected. If you are running on a busy server then you may want to restrict the number of threads to available CPUs.
Please note that you may not observe a linear relation between speed number of threads since the main bottleneck is memory access.	
	Some functions run only on single processor like Inbreeding Optimization function.

nrep

Description: Usage:	Number of replicates. nrep = value;	
-	value	is the number of replicates.
		Range: $1 - 20,000$
Type:	Mandatory	
Note:	number of replica	tion is in process, user can adjust (decrease or increase) the ates by creating file "nrep.txt" in output folder. The content d be one integer number only, which indicates the adjusted ates.

h2

Description:	Overall heritabil	ity (Polygenic plus QTL)
Usage:	h2 = value;	
	value	is heritability.
		Range: $0-1$
Type:	Mandatory	

qtlh2

Description:	QTL heritability	
Usage:	qtlh2 = value;	
	value	is heritability attributable to QTL.
		Range: $0-1$
Type:	Mandatory	
Note:	In the last histori	cal generation, the QTL allelic effects are scaled to ensure

the desired QTL variance.

If qtlh2 is set to a value smaller than h2 then a polygenic (infinitesimal) effect is also simulated. When qtlh2 is zero, no QTL effect is simulated and therefore pure polygenic effect is simulated.

phvar

Description:	Phenotypic varia	ince	
Usage:	phvar = value;		
	value	is pheno	otypic variance.
		Range:	0 - 10,000,000
Type:	Mandatory		

no_male_rec

Description:	No record for males will be simulated.
Usage:	no_male_rec;
Type:	Optional
Note:	This option is used to simulate a sex limited trait like milk yield. When males do not have records, but the selection or culling design is based on phenotypes, males will be randomly selected or culled.

skip_inbreeding

Description: Inbreeding will not be calculated.
Usage: skip_inbreeding;
Type: Optional
Note: Inbreeding is calculated in recent populations only. Calculation of inbreeding is a time consuming task in large populations. To gain speed in simulating large populations, one can safely turn off calculation of inbreeding when: 1) no polygenic effect is simulated (i.e., all the genetic variance is explained by QTL), 2) BLUP-breeding values are not estimated and 3) matings are not optimized to minimize or maximize inbreeding. Inbreeding can be skipped for the above mentioned situations but results should be interpreted with caution.

joint_pop

Description:	When more than one population is defined, populations will be analyzed
	jointly.
Usage:	joint_pop;
Type:	Optional
Default:	If not specified populations will be analyzed separately.

system

Description: Usage:	Runs a system executable file at the end of each replicate. system = "command" /option;		
-	command	is a system command.	
	option	/nrep	passes the current replicate number as the last argument to the external program.
Type:	Optional		
Note:	System command is useful when simulating larger number of replicates each with large genotype data. After each replicate the genotype data can be analyzed with an external program and then be removed.		

2- HISTORICAL POPULATION SECTION:

In order to create initial LD and to establish mutation-drift equilibrium, a historical population can be simulated by considering equal number of individuals from both sexes, discrete generations, random mating, no selection and no migration. Offspring are produced by random union of gametes, each from the male and female gametic pools. Expansion and contraction of the historical population size are allowed. Historical population is simulated based on forward-time approach. The current version of QMSim can only simulate a single historical population.

begin_hp & end_hp

Description:	Beginning and end of the historical population parameters
Usage:	begin_hp;
	end_hp;
Type:	Mandatory

hg_size

Description:	Historical generation sizes		
Usage:	$hg_size = v1 [v2];$		
	v1 indicates the historical generation size		
	Range: $2 - 100,000$		
	v2 indicates the historical generation number		
	Range: $0 - 150,000$		
Type:	Mandatory		
Example1:	$hg_size = 500 [0] 500 [1000];$		
	One thousand historical generations with constant size of 500		
Example2:	$hg_size = 2000 [0] 400 [1000];$		
	One thousand historical generations with gradual decrease in size from 2000		
	to 400. The decrease is linear.		
Note:	By using appropriate historical generation sizes different form of historical		
	bottleneck or expansion can be simulated.		
	Generation number starts always from zero therefore the first historical		

generation number must be always zero.

nmfhg Description: Usage:	The number of males in the first historical generation nmfhg = value; value indicates the number of males in the first historical generation. Range: 1 – 100,000
Type: Default: Note:	Optional equal number of individuals from each sex The sex ratio will be constant across historical generations. However, if one wishes the sex ratio can be changed in the last historical generation only.
nmlhg Description:	The number of males in the last historical generation

Description:	The number of males in the last historical generation			
Usage:	nmlhg = value;			
	value	indicates the number of males in the last historical generation.		
		Range: 1 – 100,000		
Type:	Optional			
Default:	same sex ratio as	the first historical generation		

3- POPULATION SECTION:

This section can contain more than one recent population and parameters for each population should surrounded by begin_pop and end_pop. Founders for each population can be chosen from the historical population or from the other recent populations. Multiple recent populations can be analyzed separately (by creating one distinct pedigree for each population) or jointly (by creating one pedigree for all populations) for inbreeding and estimated breeding values. To perform joint analysis use joint_pop command. Up to 1,000 recent populations can be simulated.

begin_pop & end_pop

Description:	Beginning and end of the population parameters			
Usage:	<pre>begin_pop = "string";</pre>			
	end_pop;			
	string	indicates an arbitrary name of population (maximum 20		
		characters).		
Type:	Mandatory			

Choosing founders for a population:

begin_founder; and end_founder; should be used at the beginning and end of this subsection.

For the first defined recent population founders must come from the last historical generation. However, for subsequent populations (if defined) founders can be also chosen from one or more (up to 10) previously defined populations. Founders can be chosen from specified generations of previous populations based on different criteria. One can simulate migration by choosing founder groups from different populations (see example 12).

Note that for separate analysis of multiple populations (when EBV is to be estimated) EBVs for founders of each population are estimated separately and based on no pedigree information, disregarding which population they are selected from.

If founders from two or more populations are to be selected (not randomly) from a particular generation of the population, then the order in which populations are defined becomes important. Note that populations are processed in the order they are defined.

begin_founder & end_founder			
Description:	Beginning and end of parameters for choosing founders		
Usage:	begin_founder;		
	end_founder;		
Type:	Mandatory		

male

Description: Usage1: Usage2:	male $[n = v1, po]$	<pre>males from particular population and generation op = "s1", gen = v2, select = v3 option1] option2; op = "hp", select = v3 option1] option2; is the number of male individuals to be selected.</pre>		
e	v1			
		Range: 1 – 50,000		
	s1	is the name of population.		
	hp	historical population	(last historical generation).	
	v2	is the generation num	ber.	
		Range: $0 - 2,000$		
	v3 indicates the type of selection (optional).			
		Range: rnd, phen, tbv and ebv		
		Default: rnd		
	option1	/1	to select low values	
		/h	to select high values	
		Default	/h	
	option2	/not_founder_yet	to select individuals that have not appeared as founders of any recent populations	
Type:	Mandatory			

Note: options /l and /h cannot be used when selection method is random.

In Usage2, founders are always chosen from the last historical generation. When choosing founders from the last historical generation, selection method cannot be based on 'ebv'.

This command can be used more than once in order to choose male founders from different generations or populations.

C	1 1		
Selecting base females from particular population and generation the same as for males			
the number of ger ng = value; value Mandatory	nerations for current population is the number of generations for current population. Range: $0-2,000$		
Litter size ls = value; ls = v1 v2 [p2] v3 value v1 v2 v3 p2 p3	are the litter sizes on Range: $0 - 1,000$	the numbers of progeny per dam. of the litter sizes.	
Mandatory The litter size is considered to not be controlled genetically. The litter sizes are uniformly sampled based on the provided litter size probabilities. In usage2, the probability of the first litter size is not required because the sum of probabilities is 1.			
	on;	male progeny. sex is assigned at random, but it is ensured that observed proportion of males will be equal to the specified value.	
	the same as for m the number of gen ng = value; value Mandatory Litter size ls = value; ls = v1 v2 [p2] v3 value v1 v2 v3 p2 p3 Mandatory The litter size is are uniformly sam In usage2, the pr sum of probabilit The proportion of pmp = value option value	the same as for males the number of generations for current p ng = value; value is the number of gen Range: $0-2,000$ Mandatory Litter size ls = value; ls = v1 v2 [p2] v3 [p3]; value v1 v2 v3 are the litter sizes or Range: $0-1,000$ p2 p3 are the probabilities Range: $0-1$ Mandatory The litter size is considered to not be are uniformly sampled based on the pr In usage2, the probability of the first sum of probabilities is 1. The proportion of male progeny pmp = value option; value is the proportion of male Range: $0-1$	

litters (progeny of a dam). For example, the command "pmp = 0.5/fix_litter;", when litter size is 2 will always generate one male and one female progeny per dam.

Type: Optional Default: 0.5 **md**

Description:	Mating design					
Usage:	md = value optio					
	value	is the type of mating	•			
		Range: rnd, rnd_ug, minf, maxf, p_assort, n_assort				
	option	/phen	assortative mating base on			
			phenotype			
		/ebv	assortative mating base on ebv			
		/tbv	assortative mating base on tbv			
Type:	Optional					
Default:	rnd					
Note:	Option will be u	used only for assortat	ive mating design (i.e., p_assort and			
	n_assort).	·				
	,	or random union of ga	metes. With this design offspring are			
	-		one randomly sampled from the male			
	1 •	•	netic pool. Therefore a dam can mate			
		-	ation. Note that with rnd_ug mating			
		6	verage number of progeny per dam.			
	0, (e assortative and negative assortative,				
	respectively. In the assortative mating design, sires mate to dams based on					
	similarity (positive) or dissimilarity (negative). Similarity and dissimilarity					
	can be based on true breeding values (tbv), estimated breeding values (ebv)					
	or phenotypes (phen).					
	Designs minf and maxf minimizes and maximizes inbreeding, repectively. In					
	the optimized mating design, pairs of mates are chosen so that inbreeding is					
	minimized or maximized in the next generation. To minimize or maximize					
	inbreeding, simulated annealing method is used (Sonesson and Meuwissen,					
	2000). The simulated annealing method is an adaptation of the Metropolis-					
	Hastings algorithm for the global optimization problem. The initial					
	temperature was set to 0.5 and then decreased by a factor of 0.9.					
		_	rogeny, minimization or maximization			
	of inbreeding is 1	not considered.				

sr

Description: Sire replacement

Usage:	sr = v1 v2 [v3]	option;			
-	v1	is the proportion of sire population to be culled Range: $0-1$			
	v2	is the sire population	growth rate		
		Range: $-1-5$	-		
	v3	is starting generation	number		
	option	/e	exponential growth rate		
Type:	Optional				
Default:	1 (i.e., discrete ge	enerations)			
Example1:	sr = 0.5;				
	50% of sires wo	ould be replaced in all	l generations (sire population growth		
	rate is zero)				
Example2:	$sr = 0.5 \ 0.2;$				
	50% of current s	sire population would	be culled in each generation and sire		
	population size g	grows constantly acros	s generations at rate 0.2. The number		
	of male progeny	rogeny to be selected would be larger than the number of culled			
	sires because of i	ncrease in the sire pop	oulation size		
Example3:	sr = 0.4 [1] 0.5 [5];				
	40% of sire pop	ulation would be cull	ed from generation 1 to generation 5		
	and 50% from ge	eneration 5 afterward (sire population growth rate is zero)		
Example4:	sr = 0.5 - 0.1 [1] 0.5 0.0 [5];				
		1 I	be culled in each generation but sire		
	population growt	h rates are -0.1 for the	first 5 generation and zero afterward		
Note:			to replace the culled sires, the culling		
	rate will be reduced. If sire population growth rate is negative and if the				
	decline rate is larger than the culling rate, the culling rate will increase. In				
		warning message will			
	1 1		rent generation increases/decreases by		
	-		his option is not specified size of the		
	_		by v2 * size of starting generation		
	(i.e., generation v	/3).			

dr

Description:	Dam replacement	t		
Usage:	dr = v1 v2 [v3]	option;		
	v1	is the proportion of d	lam population to be culled	
		Range: $0-1$		
	v2	is the dam population	n growth rate	
		Range: $-1-5$		
	v3	is starting generation	number	
	option	/e	exponential growth rate	
Type:	Optional			
Default:	1 (i.e., discrete ge	enerations)		
Example:	See sr for example	les		

sd

Description: Usage:	Selection design sd = value option;			
obugo.	value		be of selection	design
		• 1	v and ebv	
	option	/1	_	to select low values
		/h		to select high values
		Default		/h
Type:	Optional			
Default:	rnd			
Note:	options /l and /h cannot be used when selection design is random. option /l forces the program to select individuals with low phenotype, t ebv values and option /h does the opposite.			lividuals with low phenotype, tbv or

cd

Description: Usage:	Culling design cd = value option			
U	value	is the type of culling	g design	
		Range: rnd, phen,	tbv, ebv and age	
	option	/1	to select low values	
		/h	to select high values	
		Default	/h	
Type:	Optional			
Default:	age			
Note:	options /l and /h cannot be used when culling design is random or age.			
option /l forces the program to select individuals with low phenotype			individuals with low phenotype, tbv or	
	ebv values and option /h does the opposite. If culling design is age and selection design is not random then culling is first based on age and second based on the selection design with opposite direction within age group. For instance, if culling is set to age and selection			
	is set to tbv /h, th	he culling within each	age group is based on tbv /l.	
	,	e		

ebv_est

Description:	Breeding value estimation method		
Usage1:	ebv_est = blup option;		
Usage2:	ebv_est = approx option1;		
	option1	/mnp_male v1	
		/mnp_female v2	
	v1, v2	are minimum number of progeny with record for male and	
		female individuals (default is zero)	
		Range: $0 - 1,000$	
Usage3:	ebv_est = accur v	option;	

Usage4:	ebv_est = accur_male v1 accur_female v2 option;			
	v, v1, v2	are predefined accurate	acies	
		Range: $0-1$		
	option	/true_av	true additive genetic variance for	
			each generation will be considered	
Usage5:	ebv_est = externa	al_bv "external solver	filename";	
Type:	Optional			
Default:	None			
Note:	If ebv_est statement is specified, QMSim will estimate breeding value for each individual.			
	Breeding value can be defined as a measure of the additive genetic value of an individual as a parent.			
		re implemented to esti-	mate breeding values:	

1) blup

The best linear unbiased prediction (BLUP) of breeding values are obtained by Henderson's (Henderson, 1975) mixed linear model. The BLUP predictor has the smallest prediction error variance among all possible linear unbiased predictors. Two pieces of information are used: phenotypic records and pedigree data. The numerator relationship matrix (\mathbf{A}) is used in the following mixed model equations to derive BLUP of random additive effects (including polygenes and QTL):

$$\left[\mathbf{Z}'\mathbf{Z} + \mathbf{A}^{-1} \frac{\sigma_e^2}{\sigma_a^e}\right] [\hat{\mathbf{a}}] = [\mathbf{Z}'\mathbf{y}],$$

where **y** is the vector of phenotypic records, **Z** is the incidence matrix relating the records to the random additive effects (a), σ_e^2 is the residual variance and σ_a^2 is the additive genetic variance.

The mixed model equations are solved by the conjugate gradient method. For multiple population case, all individuals are included in the mixed model equations.

2) approx

When there is enough number of half-sib offspring per individual, EBV can be approximated with a good accuracy. More importantly, when dealing with a sex limited trait like milk yield, records on relatives such as half-sib progeny can be used to generate estimated breeding values for the sires, using the following simple formula:

$$EBV = \frac{N \times (TBV + \frac{2 \times NRND \times \sigma_e^*}{\sqrt{N}})}{N + \frac{4 - h^2}{h^2}}$$

where N is the progeny size, TBV is true breeding value, σ_e^* is residual standard deviation for a sire model ($\sigma_e^* = \sqrt{\sigma_e^2 + \frac{3}{4}\sigma_a^2}$), h^2 is heritability

and NRND is normal random deviate.

It is assume that progeny are paternal half-sibs and additive genetic variance is constant across generations. For individuals with no progeny, parental average is calculated (for founders own record is used to estimate EBV at the start). If minimum number of progeny with record is specified and an individual has fewer progeny with record in the pedigree then some dummy progeny will be considered to reach the minimum number.

3) accur

In this case, breeding values are approximated based on a predefined accuracy. Some methods for estimating breeding values might be very time consuming such as Bayesian methods to estimate breeding values using dense genetic markers (Meuwissen et al., 2001). But, knowing the accuracy for a method, computing breeding values with predefined accuracy allows one to roughly evaluate the future changes in the genetic parameters based on the assumed method.

Note that accuracy would be constant across generations if true additive genetic variance for each generation is considered, otherwise the initial additive genetic variance will be used then the loss of genetic variation will affect the accuracy.

4) external_bv

With this option, user should estimate breeding values from temporary data outputted by QMSim in each generation. The estimated breeding values should then be provided to QMSim for selection and culling.

In each generation, QMSim writes the temporary data in "data.tmp". Then it executes the "external solver". The external solver should read "data.tmp" and genotypes information (if required) and calculates breeding values then it should write EBVs in "my_bv.txt". After external solver finished, QMSim reads "my_bv.txt" and use the EBVs to select or cull parents for simulation of next generation.

File "data.tmp" contains a header line, animals ID, sire ID, dam ID, FLAG, sex, generation number, number of male and female progeny, inbreeding, homozygosity, phenotype, residual, Polygene and QTL. Flag indicates whether the animal is sire (S), dam (D) or progeny (P).

File "my_bv.txt" should contain a header line, animals ID and EBV.

Population specific parameters for saving outputs:

	poutput & end_ popo	-	
Description:	Beginning and end of output opti	ons for the population	
Usage:	begin_popoutput;		
Type:	end_ popoutput; Mandatory		
crossove	r		
Description:	Save all crossovers that occurred	in the recent population	
Usage:	crossover option;		
C	option /gen v1 v2 v3.	save crossovers occurred in specified generations. v1 v2 v3 are generation numbers for which crossovers should be saved.	
Type:	Optional		
Note:	File name = "population name"_crosso_"replicate number".txt		
data			
Description:	Save individual's data except the	ir genotypes	
Usage:	data option;		
C	option /gen v1 v2 v3.	save data for specified generations v1 v2 v3 are generation numbers for which data should be saved.	
Type:	Optional		
Note:	File name = "population name"_data_"replicate number".txt The data file contains pedigree, sex, generation number, number of male and female progeny, inbreeding, homozygosity, and genetic and residual values. X chromosomes of males are not considered in homozygosity calculation.		
stat			
	Save brief statistics on simulated	data	
Usage:	stat;		
Type:	Optional		
Note:		stat_"replicate number".txt and standard deviation for inbreeding as components, and information on structure	

homozygosity, phenotypes and its components, and information on structu of simulated population. X chromosomes of males are not considered in homozygosity calculation.

allele_freq

Description:	Save allele frequ	encies		
Usage:	allele_freq option;			
	option	/mafbin v	v is the number of bin for minor allele frequency distribution	
		/gen v1 v2 v3	save allele frequencies for specified generations. v1 v2 v3 are generation numbers for which allele frequencies should be saved.	
Type:	Optional			
Note:	QTL file name = To save memory	"population name" f only non-zero allele f	_freq_mrk_"replicate number".txt req_qtl_"replicate number".txt requencies are stored. rinted at the end of the file.	

genotype

Description:		ata	
Usage:	genotype option;	,	
	option	/binary	save genotypes in binary format (to save memory)
		/snp_code	save SNP as genotype code (i.e. 0 2 3 4 5; 0=homozygote for allele 1, 2=homozygote for allele 2, 3=heterozygote the first allele is from sire and the second allele is from dam, 4=heterozygote the first allele is from dam and the second allele is from sire, 5=missing)
		/seq	save SNP and bi-allelic QTL in the same file with genotype code: 0 2 3 4 5 (see /snp_code for genotype code description)
		/gen v1 v2 v3	save genotype for specified generations. v1 v2 v3 are generation numbers for which genotype should be saved.
Type:	Optional		
Note:	Marker file name QTL file name = The file contains order of genotyp The format of b marker (2 bytes f	"population name"_q s animal ID and genot es is as same as the ord pinary file is: 4 bytes	for animal ID and 4 bytes for each ormat is repeated for every individual.

ld

Description: Usage:	Save linkage disequilibrium stat ld option;			
Usage.	option	/maft v	v is minor allele frequency threshold for ld calculation. Markers with minor allele frequency less than v will be excluded. Default is 0.05.	
		/max_distance v	v is the maximum distance between two markers. Marker pairs with greater distance are ignored. Default is 5 cM.	
		/nmrk v	v is the number of markers to be considered for LD calculation. Marker will be selected randomly.	
		/chr v1 v2 v3	Calculate LD statistics for specified chromosome. v1 v2 v3 are chromosome numbers. Default is the longest chromosome.	
T	Ontinual	/gen v1 v2 v3	save ld data for specified generations. v1 v2 v3 are generation numbers for which ld data should be saved	
Type	Ontional			

Type: Optional

Note: File name = "population name"_ld_"replicate number".txt

The extent of LD is an important factor in association studies. Different LD measures can give substantially different estimates of LD. Each measure might be preferable in certain situations. Therefore extend of LD is calculated based on three different measures of LD and the user should decide which one to use.

1) Pooled square of the correlation between loci A and B:

$$r^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} p(A_{i}) p(B_{j}) r_{ij}^{2}$$

where

$$r_{ij}^{2} = \frac{D_{ij}^{2}}{p(A_{i})(1 - p(A_{i}))p(B_{j})(1 - p(B_{j}))}$$

and

$$D_{ij} = p(A_i B_j) - p(A_i) p(B_j)$$

2) Lewontin's LD measure:

$$D' = \sum_{i=1}^{m} \sum_{j=1}^{n} p(A_i) p(B_j) \left| \frac{D_{ij}}{D_{ij}^{\max}} \right|$$

If $D_{ij} < 0$

$$D_{ij}^{\max} = \min(p(A_i)p(B_j), (1-p(A_i))(1-p(B_j)))$$

If $D_{ij} \ge 0$

$$D_{ij}^{\max} = \min(p(A_i)(1 - p(B_j)), (1 - p(A_i))p(B_j))$$

3) Standardized chi-square measure:

$$\chi^{2} = 2N \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{D_{ij}^{2}}{p(A_{i})p(B_{j})} / 2N \min(m, n)$$

where 2N is the number of haplotypes.

4- GENOME SECTION:

begin_genome & end_genome

Description: Beginning and end of the genome section Usage: begin_genome; end_genome; Type: Mandatory

Defining chromosomes:

begin_chr & end_chr

Description:	Beginning and end of chromosome parameters		
Usage:	begin_chr = value;		
	value	is the number of chromosomes with the same parameters	
		Range: $1 - 500$	
	end_chr;		
Type:	Mandatory		
Note:		th different parameters should be defined separately. In omes can be simulated.	

xchr

Description:	Specifies X chromosome.
Usage:	xchr;
Type:	Optional
Note:	For X chromosomes, females carry two haplotypes while males carry one

haplotypes (Therefore, true EBV is calculated differently for females and males). Male X chromosome is not included in homozygosity measure.

chrlen Description: Chromosome length Usage: chrlen = value; value is the chromosome length Range: 1 - 10,000 cMType: Mandatory nmloci Description: Number of marker loci on the chromosome Usage: nmloci = value; value is the number of marker loci Range: 0-400,000 Type: Mandatory mpos Description: Marker positions Usage1: mpos = even option;even evenly spaced Usage2: mpos = rnd option;rnd random; samples from uniform distribution in each replicate Usage3: mpos = rnd1 option; random; samples from uniform distribution in the first rnd1 replicate only (fixed across replicates) v is start position option /start v /end v v is end position Usage4: mpos = pd v1 v2 v3 ...;predefined pd v1 v2 v3 ... are marker positions Mandatory Type:

nma

Description:	Number of marke	er alleles in the first historical generation
Usage1:	nma = all v;	
	all	all loci would have same number of alleles initially
	V	number of alleles
Usage2:	nma = rnd v1 v2	v3;
	rnd	random; samples from uniform distribution in each replicate

Usage3:	v1 v2 v3 nma = rnd1 v1 v2 rnd1	number of marker alleles 2 v3; random; samples from uniform distribution in the first replicate only (fixed across replicates)
	v1 v2 v3	number of marker alleles
Usage4:	nma = pd v1 v2 v	/3;
	pd	Predefined
	v1 v2 v3	number of marker alleles
		Range: $1 - 255$ for 8-bit mode and $1 - 65535$ for 16-bit
		mode
Usage5:	nma = unique;	number of alleles is 2 times of the number of individuals in the first historical generation
Type:	Mandatory	-
Note:	In the subsequer might increase by	nt historical generations, the number of alleles per locus y mutation.

maf

Description: Usage1:	Marker allele frequencies in the first historical generation $maf = eql;$	
Usage1.	eql	Equal
Usage2:	maf = rnd;	
-	rnd	random; samples from uniform distribution in each replicate
Usage3:	maf = rnd1;	
-	rnd1	random; samples from uniform distribution in the first replicate only (fixed across replicates)
Usage4:	maf = all v1 v2 v	3;
C	all	all loci would have the same allele frequencies (The
		number of alleles for all loci should be the same)
	v1 v2 v3	are marker allele frequencies (The allele frequencies must sum to one). The number of input values is the number of
		alleles.
		Range: $0-1$
Usage5:	maf = pd v1 v2 v	6
-	pd	predefined
	v1 v2 v3	are marker allele frequencies (The allele frequencies must
		sum to one within each marker). The total number of input
		values should be sum of the number of alleles for all loci.
		Range: $0-1$
Type:	Mandatory	
Note:	-	es will be simulated in the first historical generation. In the rations, allele frequencies might be changed by drift and

mutation.

nqloci Description: Number of QTL loci on the chromosome nqloci = value; Usage: value is the number of QTL loci Range: 0 - 50,000Type: Mandatory qpos Description: QTL positions Usage1: qpos = even option;even evenly Usage2: qpos = rnd option; rnd random; samples from uniform distribution in each replicate Usage3: qpos = rnd1 option; rnd1 random; samples from uniform distribution in the first replicate only (fixed across replicates) option /start v v is start position /end v v is end position Usage4: qpos = pd v1 v2 v3 ...;predefined pd v1 v2 v3 ... are QTL positions Type: Mandatory

nqa

Description:	Number of QTL	alleles in the first historical generation	
Usage1:	nqa = all v;		
	all	all loci would have same number of alleles initially	
	V	number of alleles	
Usage2:	nqa = rnd v1 v2 v	/3;	
	rnd	random; samples from uniform distribution in each replicate	
	v1 v2 v3	number of QTL alleles	
Usage3:	nqa = rnd1 v1 v2	v3;	
C	rnd1	random; samples from uniform distribution in the first replicate only (fixed across replicates)	
	v1 v2 v3	number of QTL alleles	
Usage4:	nqa = pd v1 v2 v2	3;	
-	pd	predefined	
	v1 v2 v3	number of QTL alleles	
		Range: $1 - 255$ for 8-bit mode and $1 - 65535$ for 16-bit	
		mode	
Type:	Mandatory		

Note:	In the subsequent generations, the number of alleles per locus might increase
	by mutation.

qaf		
-		
Description:		ency in the first historical generation
Usage1:	qaf = eql;	
	eql	equal
Usage2:	qaf = rnd;	
	rnd	random; samples from uniform distribution in each
		replicate
Usage3:	qaf = rnd1;	
	rnd1	random; samples from uniform distribution in the first
		replicate only (fixed across replicates)
Usage4:	qaf = all v1 v2 v3	B;
	all	all loci would have the same allele frequencies (The
		number of alleles for all loci should be the same)
	v1 v2 v3	are QTL allele frequencies (The allele frequencies must
		sum to one). The number of input values is the number of
		alleles.
		Range: $0-1$
Usage4:	qaf = pd v1 v2 v3	3;
C	pd	predefined
	v1 v2 v3	are QTL allele frequencies (The allele frequencies must
		sum to one). The total number of input values should be
		sum of the number of alleles for all loci.
		Range: $0-1$
Type:	Mandatory	
Note:		s will be simulated in the first historical generation. In the
	-	rations, allele frequencies might be changed by drift and
	mutation.	anone, andre noqueneres might be enanged by drift and

qae

1		
Description:	QTL allele effect	
Usage1:	qae = pd v1 v2 v3	3;
-	pd	predefined
	v1 v2 v3	are percentage of QTL variances (should sum up to one)
	Note:	QTL allelic effects will be sampled from gamma
		distribution with shape 0.4
Usage2:	qae = rndg v;	
	rndg	Effects are sampled from gamma distribution
	V	gamma shape
Usage3:	qae = rndn;	
	rndn	Effects are sampled from normal distribution

Usage4:	qae = rnd;
C	rnd Effects are sampled from uniform distribution
Type:	Mandatory
Note:	QTL allelic effects are simulated in the last historical generation.
	QTL allelic effects are first sample based on the specified distribution (i.e.,
	gamma, normal or uniform distribution) and then are scaled such that the sum of QTL variances in the last historical generation equals the input QTL
	variance.
	Scaling is done as follows:
	1) QTL value at each locus is calculated as sum of alleles 1 and 2
	2) For each QTL, mean in the last HP is computed
	3) For each animal in the last HP, sum of QTL values is calculated. This is true genetic value due to QTLs. Then observed variance is obtained for the last HP.
	4) Scale = sqrt(Input QTL variance) / sqrt(Observed QTL variance)
	 5) Then QTL allelic effects at each locus are scaled as (allelic effect – QTL mean) × Scale
	When relative QTL variances are specified as input values (predefined), allelic effects of each QTL are scaled separately to ensure the right variance for each QTL.

male_map_scale

Description:	Scale factor to shrink or expand linkage map for males	
Usage:	male_map_scale = value;	
	value is the scale factor	
	Range: $0-5$	
Type:	Optional	
Default:	1	
Note:	Crossover will be modeled based on the scaled map.	
	If interference has been specified, interference will also be scaled and	
	therefore interference might become different between sexes.	
	If male_map_scale is specified, new map for males will be printed in linkage	
	map output file.	

female_map_scale

Description:	Scale factor to shrink or expand linkage map for females	
Usage:	female_map_scale = value;	
	value	is the scale factor
		Range: $0-5$
Type:	Optional	
Default:	1	
Note:	Crossover will be	modeled based on the scaled map.
	If interference h	as been specified, interference will also be scaled and

therefore interference might become different between sexes. If female_map_scale is specified, new map for females will be printed in linkage map output file.

cld

Description:	Generate comple	te linkage disequilibrium in the first historical generation
Usage1:	cld = m;	generate complete LD between markers
Usage2:	cld = q;	generate complete LD between QTL
Usage3:	cld = m q;	generate complete LD between markers and between
C		QTL, separately (i.e., no LD between markers and QTL)
Usage4:	cld = mq;	generate complete LD between markers, between QTL
-	-	and between markers and QTL. In this case markers and
		QTL should have the same number of alleles.
Type:	Optional	
Note:	To generate com	plete LD for markers or QTL the following requirements
	should be met: 1) number of alleles should be the same for all loci (i.e., 'all
	n' for markers of	r/and QTL) 2) allele frequencies should be the same for all
	loci (i.e., 'eql' or	'all').
	(/ I	LD between QTL is considered, there should be few
	-	tions to create variation between individuals before starting
	recent population	C C
	1 1	

select_seg_loci

Description:	Select segregating	g loci in the last histor	ical generation. Only selected loci are
	used to simulate r	recent population(s)	
Usage:	select_seg_loci op	otion;	
	option	/maft v	v is minor allele frequency threshold. Loci with minor allele frequency larger than or equal to v will be selected
		/nmrk v	v is the number of markers to be selected randomly
		/nqtl v	v is the number of qtl to be selected randomly
Type:	Optional		
Default:	None		
Note:	mutation-drift eq	uilibrium, a large pro	of historical generations to approach oportion of loci are fixed in the last does not simulate mutation in recent

mutation-drift equilibrium, a large proportion of loci are fixed in the last historical generation. Because QMSim does not simulate mutation in recent populations, non-segregating loci are not useful. Therefore, removing nonsegregating loci in the last historical generation can save substantial amount of time and memory. If no option is specified with this command all segregating loci in the last historical generation will be selected. If 'maft' is specified selection will be first on the minor allele frequency and then based on the number of markers or QTL.

If the number of segregating markers or QTL is smaller than that specified, a warning message will be displayed.

panel			
Description:	in the last histo	orical generation whi	MAF thresholds for markers and QTLs le simulating ascertainment bias for simulate recent population(s)
Usage:	panel option;		
	option	/maft_m v ascert_bias v p	 v is minor allele frequency threshold for markers. Loci with minor allele frequency larger than or equal to v will be selected. This is a hard threshold. With ascert_bias command, ascertainment bias (i.e. skewed tail MAF distribution toward segregating markers) can be simulated. Ascertainment bias (see below) is applied on markers with MAF smaller than v.
		/maft_q v	v is minor allele frequency threshold for QTLs. Loci with minor allele frequency larger than or equal to v will be selected
		/nmrk v	v is the number of markers to be selected randomly
		/nqtl v	v is the number of qtl to be selected randomly
Type:	Optional		5
Default:	None		
Note:			of historical generations to approach

When one simulate a large number of historical generations to approach mutation-drift equilibrium, a large proportion of loci are fixed in the last historical generation. Because QMSim does not simulate mutation in recent populations, non-segregating loci are not useful. Therefore, removing nonsegregating loci in the last historical generation can save substantial amount of time and memory.

If no option is specified with this command all segregating loci in the last historical generation will be selected. If 'maft_m' and 'maft_q' are specified selection will be first on the minor allele frequency and then based on the number of markers or QTL.

If the number of segregating markers or QTL is smaller than that specified, a warning message will be displayed.

Ascertainment bias is simulated as:

- a) Markers initially were sampled from uniform distribution
- b) If a sampled marker has MAF smaller than v it is rejected based on the following probability:

$$URND \ge \left(\frac{observed MAF}{v}\right)^p$$

p can be adjusted for more and less bias. Larger p results in more ascertainment bias.

r_mpos_g

Description:	Randomize marker positions across genome in each replicate
Usage:	r_mpos_g;
Type:	Optional
Default:	None

r1_mpos_g

Description:	Randomize marker positions across genome in the first replicate only (fixed
	across replicates)
Usage:	r1_mpos_g;
Type:	Optional
Default:	None

r_qpos_g

Description:Randomize QTL positions across genome in each replicateUsage:r_qpos_g;Type:OptionalDefault:None

r1_qpos_g

Description	Randomize QTL positions across genome in the first replicate only (fixed
Description.	
	across replicates)
Usage:	r1_qpos_g;
Type:	Optional
Default:	None

rmmg

Description:	Rate of missing r	narker genotypes
Usage:	rmmg = value op	tion;
	value	is the rate of missing marker genotypes
		Range: $0 - 0.5$

Type: Default: Note:	be re-run with th out. Missing genotyp in output files.	ne same seed with rm es are simulated in the Therefore, inheritanc	Missing rates are sampled from gamma distribution with shape v genotypes as well, the scenario should mg, rmqg, rmge and rqge commented e last step when writing the genotypes se of alleles from one generation to reported statistics are based on full
rmqg Description: Usage:	Rate of missing (The same as for 1		
rmge Description: Usage:	Rate of marker g rmge = value opt value option		Error rates are sampled from
Type: Default: Note:	distribution of e sampled genotyp from the existing bi-allelic. If one is intereste be re-run with the Genotyping error	equally frequent allel less are different from t g alleles in the populat ed in having the true g e same seed and withours are simulated in the	gamma distribution with shape v andomly sampling two alleles from a les. It is ensured, however, that the the correct ones. Sampled alleles come tion. If an allele is fixed it is treated as genotypes as well, the scenario should out rmmg, rmqg, rmge and rqge. e last step when writing the genotypes reported statistics are based on true
rqge Description: Usage:	Rate of QTL gen The same as for t		

mmutr

Description: Marker mutation rate in historical population

Usage:	mmutr = value o	ption;	
-	value	is mutation arte	
		Range: $0 - 0.01$	
	option	/recurrent	recurrent mutation
Type:	Optional		
Default:	0		
Note:	By default, the m	nutation model is infini	ite-allele model.
		-	allele is generated instead the allele However, with recurrent mutation
	model, if the nu	mber of alleles for a	locus is one the locus will be treated
	as bi-allelic loo	cus. This allows one	e to simulate SNP when the first
	historical generation	ation is fixed for all lo	oci (i.e., non-segregating).
	For SNP recurrent	nt mutations are generation	ally very rare and there is no evidence
	to indicate that	mutation contributes	significantly to the erosion of LD
	between SNP (A	rdlie et al., 2002).	
	The number of	mutations per indi	vidual is sampled from a Poisson
	distribution with	mean u (u = $2 * nun$	nber of loci * mutation rate) and then
	each mutation is	assigned to a random I	locus in the genome.
	It is important to	o note that in recent p	populations no mutation is generated.
	This is because	e usually recent pop	oulations involve small number of
	generations for w	which the effect of mut	ation might be neglected.

qmutr

Description:	QTL mutation ra	te in historical populati	on
Usage:	qmutr = value option;		
	value	is mutation arte	
		Range: $0 - 0.01$	
	option	/recurrent	recurrent mutation
Type:	Optional		
Default:	0		
Note:	See mmutr		

interference

Description:	Interference		
Usage:	interference = va	lue optior	1;
	value	is interf	erence based on distance in cM
		Range:	0.01 - 500.0
	option	/c	complete interference
Type:	Optional		
Default:	no interference		
Note:	Crossover is a k	ey factor	that gradually breakdowns the allelic associations
	or LD. Crossove	r interfere	nce can be defined as the nonrandom placement of
	crossovers along	g chromo	somes in meiosis. The Poisson distribution can

describe the distribution of crossovers along a chromosome in meiosis. However, in the present of crossover interference the number of crossover events does not follow Poisson distribution and is low compared with the absent of crossover interference. In order to account for interference we used the following simple algorithm:

- The number of crossover events is sampled from a Poisson distribution with mean equal to the length of chromosomes in Morgan (or with user-specified mean; see mean_crossover)
- Locations of crossovers along chromosomes are assigned at random
- If distance between pair of crossovers (*dis*) is smaller than the specified value

If interference is complete or if URND < $(1 - \frac{dis}{value})^2$: delete one

of the two crossovers at random

URND is a uniform random deviate. No chromatid interference is assumed.

mean_crossover

Description:	Mean crossover p	per 1 Morgan
Usage:	mean_crossover = value;	
	value	is the mean crossover per 1 Morgan
		Range: $0-5$
Type:	Optional	
Default:	1	

5- OUTPUT SECTION:

begin_output & end_output

Description:	Beginning and end of the output section
Usage:	begin_output;
	end_output;
Type:	Mandatory

output_folder

Description:	Output folder
Usage:	output_folder = string;
	string path to the folder where output files will be written
Type:	Optional
Default:	Default output folder name is r_"parameter file name"

attach_rep

Description:Append output files over replicatesUsage:attach_rep;Type:Optional

linkage_map

0 -	· •
Description:	Save linkage map
Usage:	linkage_map;
Type:	Optional
Note:	Marker linkage map file name = lm_mrk_"replicate number".txt QTL linkage map file name = lm_qtl_"replicate number".txt
	QTE inikage map me name represe infinite i .i.xt

allele_effect

Description:	Save allele effects
Usage:	allele_effect;
Type:	Optional
Note:	File name = effect_qtl_"replicate number".txt

allele_label

Description:	Save starting allele labels
Usage:	allele_label;
Type:	Optional
Note:	If this command is not specified, allele labels are converted to consecutive numbers starting from 1 at last historical generation. This recoding reduces the genotype file size. If one needs to trace alleles from founders (when starting alleles are unique) then allele_label should be specified.

hp_stat

Description:	Save brief statistics on historical population
Usage:	hp_stat;
Type:	Optional
Note:	File name = hp_stat_"replicate number".txt
	The output mainly contains statistics on the genome in the last historical generations

monitor_hp_homo

Description:	Save the mean marker and QTL homozygosity of the historical population						
Usage:	monitor_hp_homo option;						
	option	/freq value					
		value	is	the	output	frequency.	For

	homozygosity will be reported				
	every 100 generations.				
	Range: 1 – 10,000				
	Default: 50				
Type:	Optional				
Note:	Marker file name = hp_homo_mrk_"replicate number".txt				
	QTL file name = hp homo qtl "replicate number".txt				
	Monitoring homozygosity in HP generations helps to find optimum number				
	of generations required to reach mutation-drift equilibrium. Once the				
	optimum number is found this command can be disabled to speed up the				
	simulation of HP. X chromosomes of males are not considered in				
	homozygosity calculation.				

example, if value is 100, the mean

Running the application

QMSim [parameter filename] -0 -16bit

If *parameter file name* is not specified, program will prompt the user to enter it. Option *-o* forces the program to overwrite output folder if already exists. Option *-16bit* is used for running the simulation under 16-bit mode, which allows for larger number of alleles per locus

Examples

Example 1: Simulating 10k SNP panel in population of 10 discrete generations and with no historical generations. All loci are in linkage equilibrium in the founders.

```
/********
** Global parameters
                                * *
title = "Example 1 - 10k SNP panel";
                               //Number of replicates
nrep = 1;
h2 = 0.2;
                                //Heritability
qtlh2 = 0.2;
                                //QTL heritability
phvar = 1.0;
                                 //Phenotypic variance
/*******
 ** Historical population **
 *********************************
begin hp;
  hg_size = 420 [0]; //Size of the historical generations
nmlhg = 20; //Number of males in the last generation
end hp;
/********
 ** Populations **
 *************************************
begin pop = "p1";
   begin founder;
      male [n = 20, pop = "hp"];
      female [n = 400, pop = "hp"];
   end founder;
   ls = 2; //Little1 Size
pmp = 0.5 /fix; //Proportion of male progeny
ng = 10; //Number of generations
                                //Litter size
   ls = 2;
   begin popoutput;
        data;
        stat;
         genotype /gen 8 9 10;
   end popoutput;
end pop;
/*******
 ** Genome **
 ************************************
begin genome;
   begin chr = 30;
     gin_chr = 30;
chrlen = 100; //Chromosome length
nmloci = 333; //Number of markers
mpos = rnd; //Marker positions
nma = all 2; //Number of marker alleles
maf = eql; //Marker allele frequencies
nqloci = 25; //Number of QTL
qpos = rnd; //QTL positions
```

Example 2: Simulating 10k SNP panel in population of 10 overlapping generations with 200 historical generations. LD decay in the founders (generation 0) and the last generation will be reported.

```
/********
** Global parameters **
 ********************************
title = "Example 2 - 10k SNP panel";
                           //Number of replicates
//Heritability
//QTL heritability
//Phoneter
nrep = 1;
h2 = 0.2;
qtlh2 = 0.2;
phvar = 1.0;
                               //Phenotypic variance
/********
 ** Historical population **
 ***********************************
begin hp;
                          //Size of the historical generations
   hg size = 420 [0]
            420 [200];
                              //Number of males in the last generation
   nmlhg = 20;
end hp;
** Populations **
 begin pop = "p1";
   begin founder;
     male [n = 20, pop = "hp"];
     female [n = 400, pop = "hp"];
   end founder;
  end_founder;
ls = 1 2 [0.05]; //Litter size
pmp = 0.5 /fix; //Proportion of male progeny
ng = 10; //Number of generations
md = rnd; //Mating design
sr = 0.4; //Replacement ratio for sires
dr = 0.2; //Replacement ratio for dams
sd = rnd; //Selection design
cd = age; //Culling design
   begin popoutput;
        Id /maft 0.1 /gen 0 10;
        data;
        genotype /snp code /gen 10;
        allele freq /gen 10;
   end popoutput;
end pop;
** Genome **
 *********************************
begin genome;
   begin chr = 30;
     chrlen = 100; //Chromosome length
nmloci = 333; //Number of markers
```

```
mpos = rnd; //Marker positions
nma = all 2; //Number of marker alleles
maf = eql; //Marker allele frequencies

      nqloci = 25; //Number of QTL
qpos = rnd; //QTL positions
nqa = rnd 2 3 4; //Number of QTL alleles
qaf = eql; //QTL allele frequencies
              = rndg 0.4;
       qae
                                  //QTL allele effects
   end chr;
             = 2.5e-5 /recurrent; //Marker mutation rate
   mmutr
   qmutr = 2.5e-5;
                                       //QTL mutation rate
   interference = 25;
                                  //Randomize marker positions across genome
   r mpos g;
   r qpos g;
                                   //Randomize QTL positions across genome
end_genome;
/********
 ** Output options **
 ********************************
begin output;
   linkage_map;
   allele effect;
end output;
```

Example 3: Simulating two lines selected by divergent phenotypic selection for 20 overlapping generations.

```
/*********
                              * *
 ** Global parameters
 *******************************
title = "Example 3 - Creating two divergent lines - 5k SNP panel";
                         //Number of replicates
nrep = 1;
                               //Heritability
//QTL heritability
h2 = 0.2;
qtlh2 = 0.2;
phvar = 1.0;
                                  //Phenotypic variance
** Historical population **
 ********************************
begin hp;
   hg size = 840 [0]
                                 //Size of the historical generations
            840 [200];
   nmlhg = 40;
                                  //Number of males in the last generation
end hp;
/******
 ** Populations **
 ************************************
begin pop = "Line 1";
   begin founder;
     male [n = 20, pop = "hp"];
      female [n = 400, pop = "hp"];
   end founder;
   end_founder;
ls = 1 2 [0.05]; //Litter size
pmp = 0.5 /fix; //Proportion of male progeny
ng = 20; //Number of generations
md = maxf; //Mating design
sr = 0.4; //Replacement ratio for sires
dr = 0.2; //Replacement ratio for dams
sd = phen /h; //Selection design
cd = age; //Culling design
   begin popoutput;
         ld /maft 0.1 /gen 0;
         data;
         genotype /snp code /gen 10;
         allele freq /gen 10;
   end popoutput;
end pop;
begin pop = "Line 2";
   begin founder;
      male [n = 20, pop = "hp"] /not founder yet;
       female [n = 400, pop = "hp"] /not founder yet;
   end founder;
   ls = 1 2 [0.05]; //Litter size
pmp = 0.5 /fix; //Proportion of male progeny
ng = 20; //Number of generations
   md = maxf;
                                 //Mating design
```

```
sr = 0.4;
                                 //Replacement ratio for sires
   dr = 0.2;
                                 //Replacement ratio for dams
   sd = phen /1;
                                //Selection design
   cd = age;
                                 //Culling design
   begin popoutput;
         data;
         genotype /snp code /gen 10;
         allele freq /gen 10;
   end popoutput;
end_pop;
/********
 ** Genome **
 *********************************
begin genome;
   begin chr = 30;
      chrlen = 100;
                             //Chromosome length
      nmloci = 166;
mpos = rnd;
                               //Number of markers
      nmloci = 166; //Number of Markers
mpos = rnd; //Marker positions
nma = all 2; //Number of marker alleles
maf = eql; //Number of QTL
qpos = rnd; //QTL positions
nqa = rnd 2 3 4; //Number of QTL alleles
qaf = eql; //QTL allele frequencies
      qae = rndg 0.4; //QTL allele effects
   end chr;
   mmuTr = 2.5e-5 /recurrent; //Marker mutation rate
qmutr = 2.5e-5; //QTL mutation rate
                           //QTL mutation rate
   interference = 25;
   r_mpos_g;
                                //Randomize marker positions across genome
                                //Randomize QTL positions across genome
   r_qpos_g;
end genome;
/********
 ** Output options **
 begin output;
   linkage map;
   allele effect;
end output;
```

Example 4: Considering different genome lengths for males and females. In this example female genome is 25% longer than male genome.

```
/*******
                              * *
** Global parameters
*******************************
title = "Example 4 - Different genome lengths for males and females - 10k
SNP panel";
                             //Number of replicates
//Heritability
nrep = 1;
h2 = 0.2;
qtlh2 = 0.2;
                               //QTL heritability
phvar = 1.0;
                                //Phenotypic variance
/**********
** Historical population **
 begin hp;
  hg size = 420 [0]
                               //Size of the historical generations
           420 [200];
   nmlhg = 20;
                               //Number of males in the last generation
end hp;
/********
 ** Populations **
 begin pop = "p1";
   begin founder;
      male [n = 20, pop = "hp"];
      female [n = 400, pop = "hp"];
   end founder;
   ls = 2;
                             //Litter size
//Proportion of male progeny
   pmp = 0.5 /fix;
   ng = 10;
                               //Number of generations
   begin popoutput;
        data;
        genotype /snp code /gen 10;
   end popoutput;
end pop;
/**********************************
 ** Genome **
 *************************************
begin genome;
   begin chr = 30;
      chrlen = 100; //Chromosome length
      female_map_scale=1.25; //Scale factor for female map
      remale_map_scale=1.25; //scale factor for female mails
nmloci = 333; //Number of markers
mpos = rnd; //Marker positions
nma = all 2; //Number of marker alleles
maf = eql; //Marker allele frequencies
nqloci = 25; //Number of QTL
qpos = rnd; //QTL positions
nqa = rnd 2 3 4; //Number of QTL alleles
qaf = eql; //QTL allele frequencies
```

<pre>qae = rndg 0.4; end_chr; end_genome;</pre>	//QTL allele effects
/*************************************	**
** Output options ********	
<pre>begin_output; linkage_map; hp_stat; end_output;</pre>	

Example 5: Simulating hotspots and coldspots.

```
/*********
** Global parameters **
title = "Example 5 - Hotspots and coldspots";
nrep = 1;
                         //Number of replicates
h2 = 0.2;
                         //Heritability
qtlh2 = 0.2;
                         //QTL heritability
phvar = 1.0;
                         //Phenotypic variance
/**********************************
** Historical population **
 ************************************
begin hp;
  hg size = 420 [0]
                         //Size of the historical generations
          420 [200];
  nmlhq
         = 20;
                         //Number of males in the last generation
end hp;
/******
* *
                         * *
        Populations
 begin pop = "p1";
  begin founder;
    male [n = 20, pop = "hp"];
     female [n = 400, pop = "hp"];
  end founder;
  ls = 2;
                         //Litter size
  pmp = 0.5 / fix;
                         //Proportion of male progeny
  ng = 10;
                         //Number of generations
  begin popoutput;
      data;
      genotype;
  end popoutput;
end pop;
/*******
** Genome
                         * *
 begin genome;
  begin chr = 1;
                                    //Chromosome 1
     chrlen = 150;
                                    //Chromosome length
     nmloci = 12;
                                    //Number of markers
     mpos = pd \ 0.0001 \ .1 \ .2 \ .3
                                    //Marker positions
               100 101 102 103
               135 140 145 150;
                                    //Number of marker alleles
          = all 2;
     nma
     maf
          = rnd;
                                    //Marker allele frequencies
     nqloci = 12;
                                    //Number of QTL
     qpos = pd .05 .15 .25 .35
                                    //QTL positions
               100.5 101.5 102.5 103.5
               132 137 142 147;
     nqa = all 4;
                                    //Number of QTL alleles
```

```
qaf = rnd;
qae = rndn;
                                        //QTL allele frequencies
                                        //QTL allele effects
   end chr;
                                         //Chromosome 2
   begin chr = 1;
     chrlen = 100;
                                         //Chromosome length
     nmloci = 12;
                                        //Number of markers
     mpos = pd 10.00 10.01 10.02 10.03 10.04 10.05 //Marker positions
        60.05 60.06 60.07 60.08 60.09 60.10;
     nma = all 2;
                                        //Number of marker alleles
     maf = rnd;
                                        //Marker allele frequencies
     nqloci = 2;
                                        //Number of QTL
     qpos = pd 10.025 60.075;
nqa = all 4;
                                    //QTL positions
//Number of QTL alleles
     qaf = rnd;
qae = rndn;
                                       //QTL allele frequencies
                                        //QTL allele effects
   end chr;
end genome;
/********
** Output options **
*********************************
begin output;
  linkage map;
end output;
```

Example 6: Simulating a historical bottleneck.

```
/*********
 ** Global parameters
                               * *
**********************************
title = "Example 6 - Historical bottleneck";
nrep = 1;
h2 = 0.2;
                        //Number of replicates
                               //Heritability
qtlh2 = 0.2;
                               //QTL heritability
phvar = 1.0;
                                //Phenotypic variance
** Historical population **
 **********************************
begin hp;
   hg_size = 1000 [0]
                                //Size of the historical generations
              200 [70]
               200 [80]
              420 [100];
   nmlhq
          = 20;
                                //Number of males in the last generation
end hp;
* *
                            * *
          Populations
 *********************************
begin pop = "p1";
   begin founder;
      male [n = 20, pop = "hp"];
      female [n = 400, pop = "hp"];
   end founder;
   ls = 2;
                               //Litter size
                             //Proportion of male progeny
   pmp = 0.5 /fix;
   ng = 0;
                               //Number of generations
   begin popoutput;
        data;
        genotype /gen 0;
        allele freq /gen 0;
   end popoutput;
end pop;
/*******
 ** Genome **
 begin genome;
   begin chr = 5;
      gin_chr = 5;
chrlen = 150; //Chromosome length
nmloci = 100; //Number of markers
mpos = rnd; //Marker positions
nma = all 2; //Number of marker alleles
maf = rnd; //Marker allele frequencies
nqloci = 25; //Number of QTL
qpos = rnd; //QTL positions
nqa = rnd 2 3 4; //Number of QTL alleles
qaf = rnd; //QTL allele frequencies
```

Example 7: Simulating population expansion in a recent population.

```
/*********
** Global parameters **
********************************
title = "Example 7 - population expansion in a recent population";
nrep = 1;
                           //Number of replicates
h2 = 0.2;
                           //Heritability
qtlh2 = 0.2;
                           //QTL heritability
phvar = 1.0;
                           //Phenotypic variance
** Historical population
                           * *
 **********************************
begin hp;
  hg size = 420 [0]
                           //Size of the historical generations
           420 [200];
  nmlhq
         = 20;
                           //Number of males in the last generation
end hp;
/******
                           * *
 * *
         Populations
 **********************************
begin pop = "p1";
  begin founder;
     male [n = 20, pop = "hp"];
     female [n = 400, pop = "hp"];
  end founder;
  ls = 2;
                           //Litter size
                       //Proportion of male progeny
//Number of generations
///Interview design
  pmp = 0.5 /fix;
  ng = 15;
                         //Mating design
  md = rnd;
  sr = 0.4 \ 0.0 \ [1]
                           //Replacement ratio for sires
       0.4 0.25 [5]
       0.4 0.0 [10];
  dr = 0.2 \ 0.0 \ [1]
                           //Replacement ratio for dams
       0.2 0.25 [5]
       0.2 0.0 [10];
  sd = rnd;
                           //Selection design
  cd = age;
                           //Culling design
  begin popoutput;
       data;
       stat;
       genotype /snp code /gen 15;
  end popoutput;
end pop;
/*******
 ** Genome **
 *********************************
begin genome;
  begin_chr = 30;
     chrlen = 100; //Chromosome length
nmloci = 167; //Number of markers
```

```
mpos = rnd;
                          //Marker positions
     nma = all 2;
                          //Number of marker alleles
          = eql;
                          //Marker allele frequencies
     maf
     nqloci = 25;
                          //Number of QTL
                          //QTL positions
     qpos = rnd;
          = rnd 2 3 4;
                          //Number of QTL alleles
     nqa
          = eql;
     qaf
                          //QTL allele frequencies
     qae
           = rndg 0.4;
                          //QTL allele effects
  end chr;
          = 2.5e-5 /recurrent; //Marker mutation rate
  mmutr
  qmutr
           = 2.5e-5;
                              //QTL mutation rate
end genome;
/********
                        **
* *
       Output options
 **********************************
begin output;
  linkage_map;
end output;
```

Example 8: Simulating a pure polygenic trait (no markers and no QTLs are simulated). As QMSim simulates a genome, the genome section in the parameter file is mandatory. However, for simulating a pure polygenic trait, user should do the following:

1- Set qtlh2 to zero

- 2- No historical generations are needed, so set nhg to zero
- 3- Define one chromosome
- 4- Set the number of markers and QTL to zero

5- Set other genome parameters to valid arbitrary values

```
/*********
 ** Global parameters
                           * *
 **********************************
title = "Example 8 - Simulating a pure polygenic trait";
                     //Number of replicates
nrep = 1;
                           //Heritability
//QTL heritability
h2 = 0.2;
qtlh2 = 0.0;
phvar = 1.0;
                             //Phenotypic variance
/******************************
 ** Historical population **
 ***********************************
begin hp;
  hg_size = 420 [0]; //Size of the historical generations
nmlhg = 20; //Number of males in the last generation
end hp;
/*********
 ** Populations
                             * *
 ***********************************
begin pop = "p1";
   begin founder;
     male [n = 20, pop = "hp"];
      female [n = 400, pop = "hp"];
   end founder;
   ls = 2;
                             //Litter size
   pmp = 0.5 /fix; //Proportion of male progeny
   nq = 10;
                             //Number of generations
   begin popoutput;
       data;
   end popoutput;
end pop;
/********
           Genome
                             * *
 * *
 *********************************
begin genome;
                         //Chromosome length
//Number of markers
//Marker positions
//Number of marker alleles
//Marker allele free
   begin chr = 1;
     chrlen = 10;
     nmloci = 0;
      mpos = rnd;
     nma = all 2;
maf = eql;
                             //Marker allele frequencies
```

Example 9: Simulating selection and culling designs. In the following example breeding individuals with inferior EBVs are replaced with progeny with superior phenotypes.

```
/**********
** Global parameters
                             * *
**********************************
title = "Example 9 - Replacing breeding individuals with inferior EBVs
with progeny with superior phenotypes - 5k SNP panel";
                           //Number of replicates
nrep = 1;
h2 = 0.3;
                             //Heritability
qtlh2 = 0.1;
                             //QTL heritability
phvar = 1.0;
                              //Phenotypic variance
/******************************
** Historical population **
 ********************************
begin hp;
  hg size = 2550 [0]
                              //Size of the historical generations
           2550 [200];
                              //Number of males in the last generation
  nmlhq = 50;
end hp;
/*********
 ** Populations **
 begin pop = "p1";
   begin founder;
     male [n = 50, pop = "hp"];
      female [n = 2500, pop = "hp"];
   end founder;
  ng = 10; //Proportion of male progeny
ng = 10; //Number of generations
md = rnd; //Mating design
sr = 0.4; //Replacement ratio for sires
dr = 0.2; //Replacement ratio for dams
sd = phen /h; //Selection design
cd = ebv /l; //Culling design
ebv_est = blup /true
   ebv est = blup /true av;
   begin popoutput;
        ld /maft 0.1 /gen 0;
        data;
        stat;
        genotype /snp code /gen 10;
   end popoutput;
end_pop;
/********
 ** Genome **
 *********************************
begin genome;
  begin chr = 30;
                         //Chromosome length
//Number of markers
     chrlen = 100;
     nmloci = 167;
```

```
mpos = rnd;
                               //Marker positions
      nma = all 2;
maf = eql;
                               //Number of marker alleles
                               //Marker allele frequencies
                               //Number of QTL
      nqloci = 25;
           = rnd; //QTL positions
= rnd 2 3 4; //Number of QTL alleles
= eql; //QTL allele frequencies
      qpos = rnd;
      nqa
      qaf
      qae
             = rndg 0.4;
                               //QTL allele effects
   end chr;
   mmuTr = 2.5e-5 /recurrent; //Marker mutation rate
qmutr = 2.5e-5; //QTL mutation rate
                               // Randomize marker positions across genome
   r_mpos_g;
                                // Randomize marker positions across genome
   r qpos g;
end genome;
/********
 * *
                              **
         Output options
 *********************************
begin output;
   linkage_map;
end output;
```

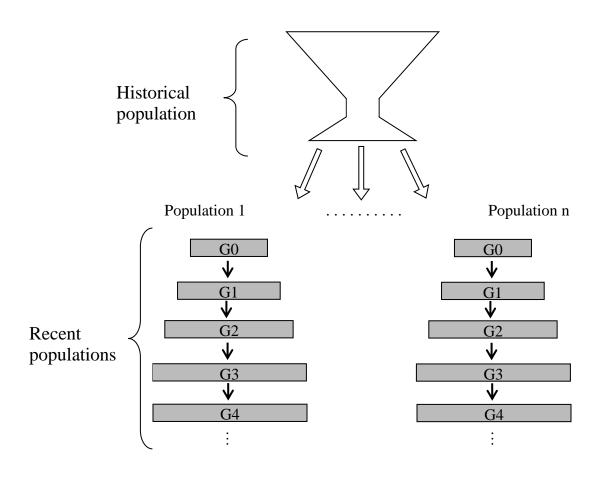
Example 10: Simulating a sex limited trait.

```
/*********
** Global parameters
                       * *
********************************
title = "Example 10 - Simulating a sex limited trait - 5k SNP panel";
nrep = 1;
                     //Number of replicates
                         //Heritability
h2 = 0.3;
qtlh2 = 0.3;
                         //QTL heritability
                         //Phenotypic variance
phvar = 1.0;
                          //Males have no record
no male rec;
** Historical population **
********************************
begin hp;
                         //Size of the historical generations
  hg size = 2550 [0]
          2550 [200];
  nmlhg = 50;
                          //Number of males in the last generation
end hp;
/******
** Populations **
 *************************************
begin pop = "p1";
  begin founder;
    male [n = 50, pop = "hp"];
     female [n = 2500, pop = "hp"];
  end founder;
  ls = 1 2 [0.2]; //Litter size
                         //Proportion of male progeny
  pmp = 0.5;
                         //Number of generations
  ng = 10;
                         //Mating design
  md = rnd;
  sr = 0.4;
                         //Replacement ratio for sires
  dr = 0.2;
                         //Replacement ratio for dams
  sd = phen /h;
                         //Selection design
  cd = ebv /l;
                          //Culling design
  ebv est = blup /true av;
  begin popoutput;
       Id /maft 0.1 /gen 0;
       data;
       stat;
       genotype /snp code /gen 10;
  end popoutput;
end pop;
** Genome
                   * *
 **********************************
begin genome;
  begin chr = 30;
     chrlen = 100;
                        //Chromosome length
//Number of markers
     nmloci = 167;
     mpos = rnd;
                         //Marker positions
```

Example 11: F2 and backcross designs.

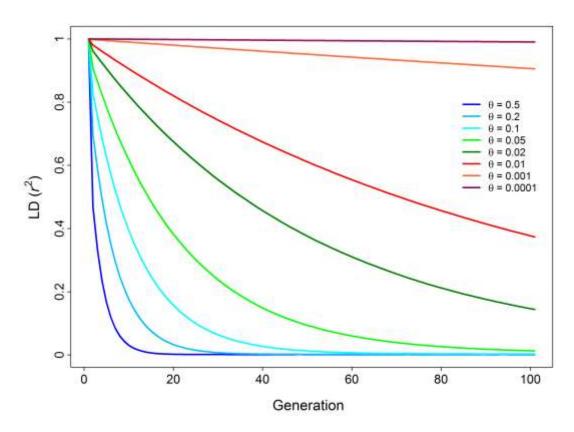
```
/*********
** Global parameters
                            * *
**********************************
title = "Example 11 - F2 and backcross designs";
                         //Number of replicates
nrep = 1;
h2 = 0.2;
                            //Heritability
qtlh2 = 0.05;
                            //QTL heritability
phvar = 1.0;
                            //Phenotypic variance
** Historical population **
 **********************************
begin hp;
  hg size = 10000 [0] //Size of the historical generations
           10000 [100];
end hp;
/*********
** Populations **
 begin pop = "line1";
  begin founder;
     male [n = 20, pop = "hp", select = tbv /h];
     female [n = 400, pop = "hp", select = tbv /h];
   end founder;
  ls = 2; //Litter size
pmp = 0.5 /fix; //Proportion of male progeny
ng = 20; //Number of generations
md = p_assort /tbv; //Mating design
sd = tbv /h; //Selection design
end pop;
begin pop = "line2";
   begin founder;
     male [n = 20, pop = "hp", select = tbv /l];
     female [n = 400, pop = "hp", select = tbv /l];
   end founder;
   ls = 2;
                            //Litter size
  pmp = 0.5 /fix;
                            //Proportion of male progeny
                            //Number of generations
   ng = 20;
  md = p_assort /tbv; //Mating design
   sd = tbv /1;
                            //Selection design
end pop;
//Cross between line1 and line 2 to generate F2
begin pop = "cross";
  begin founder;
     male [n = 20, pop = "line1", gen = 20];
     female [n = 400, pop = "line2", gen = 20];
   end founder;
   1s = 2;
                            //Litter size
   pmp = 0.5 /fix;
                            //Proportion of male progeny
```

```
ng = 2;
                              //Number of generations
   md = rnd;
                              //Mating design
   sr = 1;
                              //Replacement ratio for sires
                             //Replacement ratio for dams
   dr = 1;
   sd = rnd;
                              //Selection design
   cd = rnd;
                              //Culling design
   begin popoutput;
        data;
        genotype /gen 1 2;
        stat;
   end popoutput;
end pop;
//Backcrossing F1 to line1
begin pop = "bckcross";
  begin founder;
     male [n = 20, pop = "line1", gen = 20];
      female [n = 400, pop = "cross", gen = 1];
   end founder;
   ls = 2;
                              //Litter size
   pmp = 0.5 /fix;
                             //Proportion of male progeny
   ng = 1;
                             //Number of generations
  md = rnd;
                             //Mating design
   begin popoutput;
        data;
        genotype /gen 1;
        stat;
   end popoutput;
end pop;
/********
           Genome **
 * *
 ***********************************
begin genome;
  begin chr = 1;
     chrlen = 100; //Chromosome length
nmloci = 8; //Number of markers
      mpos = pd 30 35 39 40.001 60.001 61 65 70; //Marker positions
           = all 2; //Number of marker alleles
= eql; //Marker allele frequencies
      nma
     maf = eql;
                             //Number of QTL
      nqloci = 2;
      qpos = pd 40 60; //QTL positions
     nqa = all 2; //Number of QTL alleles
qaf = eql; //QTL allele frequencies
qae = pd 0.1 0.9; //QTL allele effects
      cld = mq; //Complete LD in the first historical generation
   end chr;
end_genome;
** Output options **
 ***********************************
begin output;
end output;
```


Example 12: Migration.

```
/****
 ** Global parameters **
title = "Example 12 - Migration";
                           //Number of replicates
nrep = 1;
h2 = 0.3;
                           //Heritability
qtlh2 = 0.1;
                           //QTL heritability
phvar = 1.0;
                           //Phenotypic variance
/*******
 ** Historical population **
 **********************************
begin hp;
  hg size = 1000 [0]
                          //Size of the historical generations
           1000 [100];
end hp;
/********
** Populations **
 ************************************
begin pop = "line1";
  begin founder;
     male [n = 10, pop = "hp", select = tbv /h];
     female [n = 100, pop = "hp", select = tbv /h];
  end founder;
  ls = 2;
                           //Litter size
  pmp = 0.5 /fix;
                        //Proportion of male progeny
//Number of generations
  ng = 10;
  md = rnd;
                          //Mating design
  sd = phen /h;
                          //Selection design
  begin popoutput;
       data;
       stat;
       allele freq /gen 10;
  end popoutput;
end pop;
begin pop = "line2";
  begin founder;
     male [n = 10, pop = "hp", select = tbv /l];
     female [n = 100, pop = "hp", select = tbv /l];
  end founder;
  ls = 2;
                          //Litter size
                        //Proportion of male progeny
//Number of generations
  pmp = 0.5 / fix;
  ng = 10;
  md = rnd;
                          //Mating design
  sd = phen /1;
                           //Selection design
  begin popoutput;
       data;
       stat;
       allele freq /gen 10;
       end popoutput;
end pop;
```

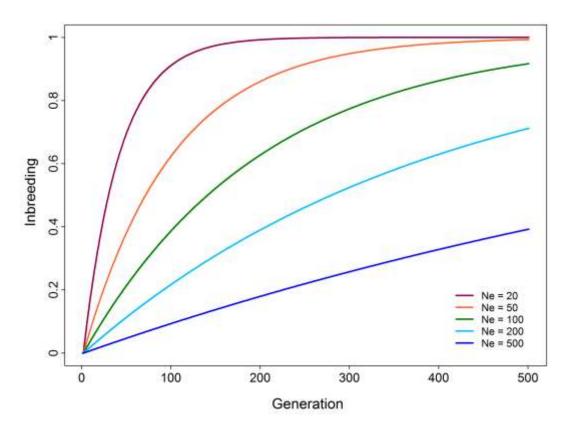
```
//2 males and 10 females from line2 migrate to line1
begin pop = "line1 c";
    begin founder;
         male [n = 8, pop = "line1", gen = 10];
         male
                   [n = 2, pop = "line2", gen = 10];
         female [n = 90, pop = "line1", gen = 10];
         female [n = 10, pop = "line2", gen = 10];
    pmp = 0.5 /fix; //Litter size
pmp = 0.5 /fix; //Proportion of male progeny
ng = 5; //Number of generations
md = rnd; //Mating design
sd = rnd; //Selection dia
begin population
    begin popoutput;
           data;
            stat;
            allele freq /gen 5;
    end popoutput;
end pop;
/**********
 ** Genome **
 **********************************
begin genome;
    begin chr = 10;
        gin_chr = 10;
chrlen = 100; //Chromosome length
nmloci = 101; //Number of markers
mpos = even; //Marker positions
nma = all 4; //Number of marker alleles
maf = eql; //Marker allele frequencies
nqloci = 25; //Number of QTL
qpos = rnd; //QTL positions
nqa = rnd 2 3 4; //Number of QTL alleles
qaf = eql; //QTL allele frequencies
qae = rndg 0.4; //QTL allele effects
    end chr;
end genome;
/**********
 ** Output options **
 *********************************
begin output;
end output;
```


Note that parameters for all examples given above have been chosen arbitrarily and may not represent a realistic situation. Examples are only provided to help users to get a quick start with QMSim.

Example of simulation diagram:

Decay of linkage disequilibrium in a simulated data set using QMSim:

When an infinite population undergoes random mating and random selection, the amount of linkage disequilibrium between two adjacent loci is expected to decay exponentially over generations at rate equal to recombination rate. We have investigated the decay of LD in a simulated population obtained by QMSim. The population consisted of 500 sires and 500 dams in each generation which were mated and selected at random for 100 discrete generations. Different marker densities were considered. In the first generation, markers were forced to be in complete LD with each other (see next page for the parameter file). The following graph (Figure 1) shows the decay of LD between adjacent markers for different recombination rates observed in the simulated data set.


Figure 1. Observed decay of linkage disequilibrium (LD) between adjacent marker pairs for different recombination rates (θ) in a simulated data set using QMSim.

Parameter file for assessing decay of LD using QMSim

```
/********
 ** Global parameters
                                * *
title = "Decay of linkage disequilibrium - marker interval is 1 cM";
nrep = 1000;
                              //Number of replicates
                               //Heritability
//QTL heritability
h2 = 0.2;
qtlh2 = 0.2;
phvar = 1.0;
                                //Phenotypic variance
skip inbreeding;
/*******
 ** Historical population **
 ***********************************
begin hp;
   hg_size = 1000[0]; //Size of the historical generations
end hp;
/*******
 ** Populations **
 ********************************
begin pop = "Pop1";
   begin founder;
      male [n = 500, pop = "hp"];
      female [n = 500, pop = "hp"];
   end founder;
   ls = 2;
                                //Litter size
   pmp = 0.5 / fix;
   ng = 100;
                                //Number of generations
   md = rnd;
                                //Mating design
   sr = 1;
                                //Replacement ratio for sires
   dr = 1;
                                //Replacement ratio for dams
   sd = rnd;
                                //Selection design
   begin popoutput;
       ld /maft 0.1;
   end popoutput;
end pop;
/********
                        * *
 * *
             Genome
 *********************************
begin genome;
   begin chr = 1;
      gin_chr = 1;
chrlen = 100; //Chromosome length
nmloci = 101; //Number of markers
mpos = even; //Marker positions
nma = all 2; //Number of marker alleles
maf = eql; //Marker allele frequencies
nqloci = 50; //Number of QTL
qpos = rnd; //QTL positions
nqa = all 2; //Number of QTL alleles
qaf = eql; //QTL allele frequencies
qae = rndn; //QTL allele effects
```

Observed inbreeding vs. expected inbreeding:

Inbreeding is an important parameter in the population and evolutionary genetics. The mean population inbreeding coefficient at generation t can be predicted as $F_t = 1 - (1 - \frac{1}{2Ne})^t$, where Ne is the initial effective population size. To investigate whether QMSim generates inbreeding properly, observed average inbreeding coefficients for different effective population sizes (20, 50, 100, 200 and 500) against generations were plotted. The observed average inbreeding coefficients were well in agreement with the expected ones. Results are shown in Figure 2. For details of the simulated population structure, see parameter file in below.

Figure 2. Observed average inbreeding coefficients over generations for different effective population sizes (*Ne*).

Parameter file for assessing inbreeding:

```
/********
 ** Global parameters **
**********************************
title = "Inbreeding and effective population size";
nrep = 1000; //Number of replicates
                                //Heritability
h2 = 0.2;
                               //QTL heritability
qtlh2 = 0.2;
phvar = 1.0;
                                //Phenotypic variance
skip inbreeding;
/*******
 ** Historical population **
 **********************************
begin hp;
  hg_size = 100[0]; //Size of the historical generations
end hp;
/*********
** Populations **
 begin_pop = "Pop1";
   begin founder;
     male [n = 50, pop = "hp"];
      female [n = 50, pop = "hp"];
   end founder;
   ls = 2;
                                //Litter size
   pmp = 0.5 / fix;
   ng = 500;
                                //Number of generations
                                //Mating design
   md = rnd ug;
                              //Replacement ratio for sires
//Replacement ratio for dams
   sr = 1;
   dr = 1;
   sd = rnd;
                                //Selection design
   begin popoutput;
      stat;
   end popoutput;
end pop;
/**********
 ** Genome **
 ***********************************
begin genome;
   begin chr = 30;
      gin_chr = 30;
chrlen = 100; //Chromosome length
nmloci = 166; //Number of markers
mpos = even; //Marker positions
nma = unique; //Number of marker alleles
maf = eql; //Marker allele frequencies
nqloci = 20; //Number of QTL
qpos = rnd; //QTL positions
nqa = all 2; //Number of QTL alleles
qaf = eql; //QTL allele frequencies
qae = rndn; //QTL allele effects
```

end_chr;
end_genome;

Mutation-drift equilibrium:

Genetic variability is generated by mutation but it is lost randomly over generations through genetic drift. The amount of new variation depends on the mutation rate and loss of variation due to fixation of alleles depends on effective population size.

Let's assume that alleles are neutral (no selection) and that offspring s in each generation are produced from random union of gametes from N males and M females. Over generations, mutation and genetic drift act in opposite directions. However after certain number of generations the population reaches mutation-drift equilibrium where the population maintains a certain amount of variation. At equilibrium $F_t = F_{t-1} = F_{t-2} = F$. Under infinite-allele mutation model F is approximately $\frac{1}{1+4Neu}$ and proportion of heterozygous loci is 1-F or $H \approx \frac{4Neu}{1+4Neu}$ (Crow and Kimura, 1970), where u is the mutation rate. Under infinite-allele model, mutation creates new unique allele that never existed in the population.

For finite-allele model, mutation does not create novel allele but rather modifies an allele to another allele within the allelic space with the same probability. Recurrent mutation can be reversible. At equilibrium F is approximately $\frac{1+\frac{4Neu}{k-1}}{1+\frac{4Neuk}{k-1}}$, where k is the number of possible

alleles.

In the following we assessed the distribution of allele frequencies at mutation-drift equilibrium for neutral alleles under assumption of random union of gametes from N males and M females. Here we have simulated bi-allelic markers mimicking SNP markers, which follow a recurrent mutation model. When 4Neu is smaller than 1, close to 1 or larger than 1, at mutation-drift equilibrium a U-shape, uniform or normal distribution of allele frequencies is expected, respectively (Wright, 1931). Six different scenarios were considered. Parameters for these scenarios are shown in Table 1.

Parameters	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Ne	100	1,000	1,000	500	1,000	2,000
и	2.5e-4	2.5e-5	2.5e-5	2.5e-4	2.5e-4	2.5e-4
4Neu	0.1	0.1	0.1	0.5	1	2
No. of SNP	10,000	10,000	10,000	10,000	10,000	10,000
Initial allele freq.	fixed	fixed	0.5	fixed	fixed	fixed
No. of gen.	1,000	1,000	1,000	1,000	1,000	1,000
	5,000	5,000	2,000	5,000	5,000	5,000
	10,000	10,000	5,000	10,000	10,000	10,000
	20,000	20,000	10,000	20,000	20,000	20,000
		40,000				
		60,000				
No. of replicates	100	100	100	100	100	100

Table 1. Parameters for different scenarios of mutation-drift equilibrium.

For all scenarios equal numbers of males and females were considered, matings were based on random union of gametes and mutation and counter-mutation rates are assumed to be equal. Results for each scenario are shown in Figures 3 to 7.

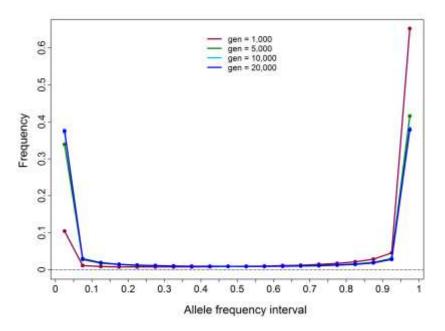


Figure 3. Distribution of allele frequencies for scenario 1.

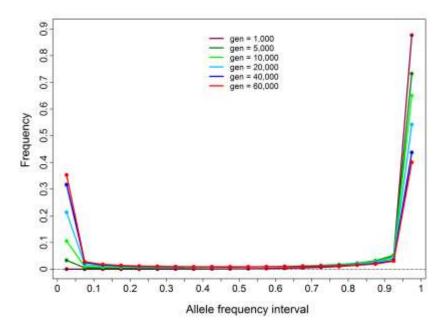


Figure 4. Distribution of allele frequencies for scenario 2.

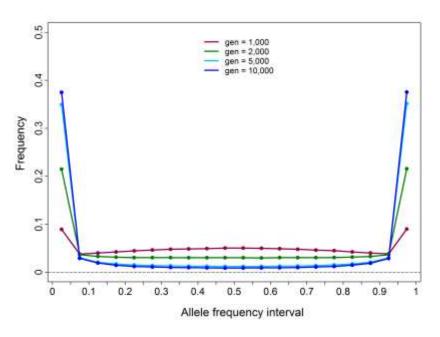


Figure 5. Distribution of allele frequencies for scenario 3.

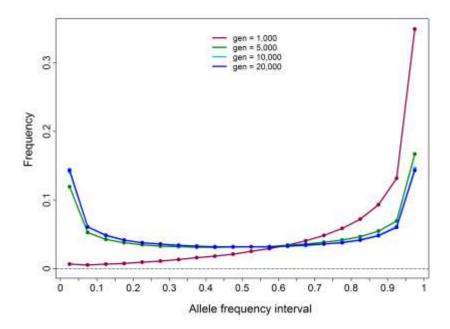


Figure 6. Distribution of allele frequencies for scenario 4.

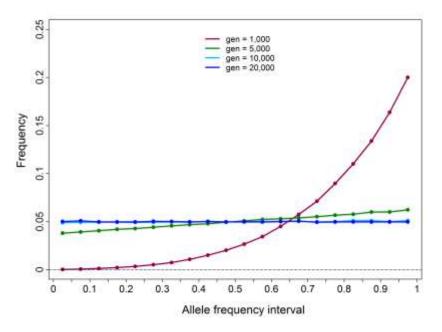


Figure 7. Distribution of allele frequencies for scenario 5.

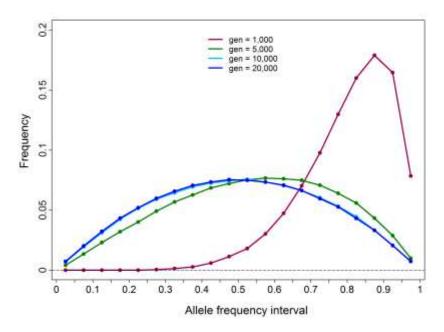


Figure 8. Distribution of allele frequencies for scenario 6.

From graphs 3 and 4 (scenarios 1 and 2) it can be seen that when 4*Neu* is constant but *Ne* differs, allele frequencies approach mutation-drift equilibrium slower with larger *Ne*.

Comparing graph 4 to graph 5 (scenario 2 to scenario 3) shows that when allele frequencies are equal (0.5) in the first generation instead of fixed (1.0), they approach their steady-state frequencies much quicker. Graphs 6, 7 and 8 show the distribution of allele frequencies for different values of 4Neu.

Parameter file for assessing mutation-drift equilibrium (scenario 4):

```
/*********
** Global parameters **
 *********************************
title = "Mutation-drift equilibrium";
nrep = 100;
                             //Number of replicates
h2 = 0.2;
                                //Heritability
                                 //QTL heritability
qtlh2 = 0.2;
phvar = 1.0;
                                 //Phenotypic variance
/******
** Historical population **
 **********************************
begin hp;
   hg_size = 500[0]
                            //Size of the historical generations
              500[1000];
end hp;
/*********
 ** Populations **
 **********************************
begin pop = "Pop1";
   begin founder;
      male [n = 250, pop = "hp"];
      female [n = 250, pop = "hp"];
   end founder;
   ls = 2;
                                 //Litter size
   pmp = 0.5 / fix;
   ng = 0;
                                //Number of generations
   md = rnd;
                                //Mating design
                                //Replacement ratio for sires
   sr = 1;
                                //Replacement ratio for dams
   dr = 1;
                               //Selection design
   sd = rnd;
   begin popoutput;
        data;
   end popoutput;
end pop;
/********
 ** Genome **
 ***********************************
begin genome;
   begin chr = 30;
      gin_chr = 30;
chrlen = 100; //Chromosome length
nmloci = 333; //Number of markers
mpos = even; //Marker positions
nma = all 1; //Number of marker alleles
maf = eql; //Marker allele frequencies
nqloci = 25; //Number of QTL
qpos = rnd; //QTL positions
nqa = all 2; //Number of QTL alleles
qaf = eql; //QTL allele frequencies
qae = rndn; //QTL allele effects
```

Acknowledgments:

The authors gratefully acknowledge financial support from L'Alliance Boviteq Inc. (SEMEX Alliance, Canada), Natural Sciences and Engineering Research Council of Canada (Collaborative Research and Development grant), and the Ontario Centre for Agriculture Genomics (Challenge Fund).

References:

- Andersson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nature Genetics Reviews 2, 130-138.
- Ardlie, K. G., L. Kruglyak and M. Seielstad. 2002. Patterns of linkage disequilibrium in the human genome. Nature Reviews, Genetics 3, 299-309.
- Crow, J. F., and M. Kimura, 1970. An Introduction to Population Genetic Theory. Harper & Row, New York.
- Henderson, C. R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics 31, 423-447.
- Hoggart, C. J., M. Chadeau-Hyam, T. G. Clark, R. Lampariello, J. C. Whittaker, M. De Iorio and D. J. Balding. 2007. Sequence-level population simulations over large genomic regions. Genetics 177, 1725-1731.
- Hudson, R. R. 2002. Generating samples under a Wright-Fisher neutral model. Bioinformatics 18, 337-378.
- Li, C. and M. Li. 2007. GWAsimulator: A rapid whole-genome simulation program. Bioinformatics 24, 140-142.
- Matsumoto, M. and T. Nishimura. 1998. Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8, 3-30.
- Meuwissen, T. H. E., B. J. Hayes and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819-1829.
- Meuwissen, T. H. E., A. Karlsen, S. Lien, I. Olsaker and M. E. Goddard. 2002. Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161, 373-379.
- Pritchard, J. K. and N. A. Rosenberg, 1999. Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet. 65, 220-228.

- Schaffner, S. F., C. Foo, S. Gabriel, D. Reich, M. J. Daly and D. Altshuler. 2005. Calibrating a coalescent simulation of human genome sequence variation. Genome Res. 15, 1576-1583.
- Sonesson, A. K. and T. H. E. Meuwissen. 2000. Mating schemes for optimum contribution selection with constrained rates of inbreeding. Genetics Selection Evolution 32, 231-248.
- Wright, S. 1931. Evolution in Mendelian populations. Genetics 16, 97-159.

License for the Mersenne Twister random number generator

The random number generator incorporated in QMSim is based on a code downloaded from:

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. The names of its contributors may not be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.