
This book is dedicated to Professor Dr G. K. Constantinescu,
founder of the modern animal husbandry science in Romania,
originator of the National Animal Husbandry Institute (1926)
and initiator of the first laboratory of experimental genetics.





Preface

The idea of using the most valuable animals for breeding is ancient, being
mentioned by VARRO, 2000 years B.C.; this idea was resumed, in one form
or another starting with the 18th and 19th centuries (Andre). From its early
moments, the genetic breeding of the dairy cattle focused on the identification
of the best dairy cows in terms of genetics. The dependence of phenotype on
genotype in cattle has been conceived since late 19th century, when H. BRANTH
(1891), a Danish farmer said that “... the ability of a cow to produce more or less
milk fat, from the feed it eats, depends on heredity”. The author showed (1893)
that the outer look of an animal cannot provide information on its ability to
produce high or low-fat milk. This ability might be evaluated using the pedigree,
but the best way is to make an evaluation using the progeny. Although BRANTH
grasped the major role of the progeny for the genetic evaluation of the breeders
he did no special investigations into this matter.

Daughter-Dam Comparison. BRANTH’s ideas have been carried fur-
ther by SEDELHOLM, who checked them in his own farm (1900). SEDELHOLM
compared the daughters with their dams in terms of milk butterfat percentage,
showing that the sire has a variable influence on daughter’s performance. Histor-
ically, this was the first actual attempt to apply the progeny selection in dairy
cattle. After 1900, the attempts to identify the best parental stock in dairy cattle
entered a new stage, the stress falling on the genetic evaluation of the bulls.
Thus, the Danish were the first to introduce, in 1902, the progeny testing of bulls
using the records provided by the dairy cows breeding associations, while as of
1912 they started to use the daughter-dam comparison (J. Johanson, 1960). Sub-
sequently, based on the work of Wright and Lush, several operational versions of
the daughter-dam comparison method have been developed from 1925 to 1945.
Within this context, the proposed indices can be classified into four categories:
1) indices that consider only daughter’s average (Gifford, 1930); 2) indices that
consider the actual daughter-dam difference (Pearl, Norton, Rice, Mount Hope);
3) indices that consider the number of daughters (Wright, 1932) and 4) indices
that consider heritability and repeatability as genetic parameters (Lush, 1941).
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In the USA, the daughter-dam comparison method, with its different versions,
has been used officially for the genetic evaluation of the bulls from 1936 to 1962.
Despite its several improved variants, the daughter-dam comparison model had
to make place for a new method, which allows removing the environmental dif-
ferences between the farms in which the candidates to selection performed.

Contemporary Comparison. The new proposal was called the Con-
temporary Comparison model and it was introduced by Robertson and Rendel,
in 1954. Independently of the two, a variety of this method, the Herdmate Com-
parison, was presented in the USA by Henderson C.R., in the same year. The
difference between the two methods is that the first method used just the records
of the first lactation, while the second method considered all lactations of the
surveyed animals. This method justified its applicability in the hypothesis of the
genetic similarity of the herds.

Modified Contemporary Comparison. After two decades of its ap-
plication, the situation of the dairy cattle populations changed very much due to
the accumulated genetic progress. Under the new circumstances, a new variant
was proposed, which allowed adjustment for the genetic merit of the contemporar-
ies; the inclusion of the genetic merit of the ancestors; and the use of all lactations.
The “Modified Contemporary Comparison” was used officially by USDA from 1974
to 1989, when it was replaced by the Repeatability Animal Model.

Cumulative difference method. Other countries, such as Israel and
Germany, also tried to improve the Contemporary Comparison method. Thus,
Bar-Anan and Sacks (1974), described a method which tried to correct the defi-
ciencies of the Contemporary Comparison method. The new procedure was called
the “Cumulative difference method”, CD; the estimated breeding value of the sire
consists of two parts: a) an estimate of the contemporary comparison; and b)
an adjustment for the genetic level of the contemporaries of the sire’s daughters.
The practice of estimating the breeding value of the bulls showed that the bulls
with a lower number of daughters are consistently disadvantaged against the other
bulls. To remedy this deficiency of the method, L. Dempfle (1976), proposed a
modification of the Bar-Anan and Sacks formula. Thus, the multiplication with
the regression coefficient was to be done after considering the genetic level of the
contemporaries of the sire’s daughters.

Least Squares Method. Another method proposed for the calculation
of the estimated breeding value of the bulls was the least squares method. Ini-
tially, the method was recommended by Robertson and Rendel (1954), but due to
the low computing capacity at that time, this method was no longer used for ge-
netic evaluation. Later, Henderson (1963), Searle (1964) and Cunningham (1965)
improved this method. Although the least squares method was not widely used
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for animal breeding purposes, it has historic importance because it allowed the
advancement to a more elaborate method (BLUP).

Best Linear Unbiased Prediction. The father of “BLUP methodo-
logy” is Charles Roy Henderson, disciple of J. Lush. Henderson also formed a
school (Cornell University, Ithaca, N.Y.), where his disciples (L.R. Schaeffer, B.
W. Kennedy, S. Searle, D. Gianola, D. Sorensen, V. Ducrocq, C. Lin, etc.) studied
and developed new methodologies for the prediction of the breeding value, tak-
ing further the work of Wright, Lush and Henderson. Theoretically, BLUP was
established as far as in 1949, but its actual use in practice started only in 1970
due to technical reasons. Henderson said in 1973 that: “Theoretically, most of the
calculation principles of BLUP methodology were already available, but the com-
puting capacity was completely inadequate for its utilization. The contemporary
comparison method was a technically possible compromise at that time”

Sire Models. Historically, the first type of model used for the genetic
evaluation of the dairy cattle was the Sire Model, in the crossed two-factor vari-
ant, without genetic groups. The practical validity of the model relied on several
working hypotheses among which: the group of sires is a random sample of the
population, unselected, with no inbreeding; the sires are not related among them
or with their mates; mating is random, one progeny being tested from each dam;
the progeny of a sire are considered to be half-brothers, not related to the pro-
geny of other sire; the dams are a random sample, representative for the original
population. In time, due to the accumulation of genetic progress in the dairy
cattle populations, part of these working hypotheses were invalidated and thus the
breeding value of the candidates to selection was overestimated/underestimated.
Thus, a first disagreement with the hypotheses refers to the situation in which
the evaluated sires belong to the same homogenous population. As the artificial
insemination (AI) techniques expanded, and as some outstanding bulls were be-
ing used intensely, the genetic differences between the subpopulations of the same
breed became stronger. Within this context, the hypotheses that the candidates
to selection come from a single homogenous population, with no genetic differ-
ences between farms, were invalidated. As genetic differences existed, the young
bulls were consistently underevaluated compared to the older bulls. This difficulty
was explained by an increasing trend of the genetic merit of the contemporaries
within the same farm. Henderson raised again in 1966 the problem of the genetic
groups and proposed a model which to eliminate the difficulties encountered by
the classical methods of genetic evaluation of the bulls. The new model was called
“NEAISC Model - the Northeast Artificial Insemination Sire Comparison”, and
it was introduced in the genetic evaluation of the sire in Northeast USA start-
ing from 1972. Initially, the bulls were considered as being unrelated and the
genetic groups have been defined as sets of sires from the same AI organization
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(subpopulation) which started to be used for AI at the same time. Generally,
the purpose of grouping was to account for the genetic trend and for the genetic
differences between subpopulations. The introduction of the genetic groups in the
biometric model to correct the estimates for the existing genetic differences was
prompted by the fact that the relationships between the analysed sires were not
accounted for, either because the genealogical information was not known, or due
to the high cost of inversing the relationship coefficients matrix (A). Until 1974,
the genetic evaluation methods used in the USA (Herdmate and Cornell Com-
parison) didn’t use the relationships between the sires.The MCC included sire
and maternal grandsire information using selection index equations in 1974 which
added considerable accuracy to the genetic evaluations. A year later, Henderson
C.R. discovered how to include these relationships in BLUP. The relationship in-
formation was transferred in both directions (to and from ancestors) by BLUP.
However, the genetic group effects inherited between generations was included in
the MCC but not in BLUP, until inherited groups were introduced by Westell et
al. in 1988. Although the potential advantages of using sire relationships to calcu-
late the estimated breeding value were known previously, their use was prevented
by the prohibitive cost involved by the inversion of large matrices (A). After 1975,
most researchers used the discoveries of Henderson, regarding the direct inversion
of the relationship matrix without using the classical inversion methods. The
use of relationships for the genetic evaluation of the bulls had several advantages
among which: 1) higher accuracy of the genetic value prediction, particularly for
the sire with lower progeny number or with no progeny; 2) it reduced the number
of genetic groups necessary to account for the genetic trend and 3) allowed the
earlier evaluation of the bulls by the possibility of considering the performance
of their dams and of the paternal half-sisters. Some of the other hypotheses that
were invalidated in time were: a) the mating is random and b) the dams are a
random sample, representative for the original population. Because some farmers
preferred to mate the best dams with the best sires, the hypothesis that the sires
are randomly dispersed among farms was also invalidated. The breeding value of
the bulls was corrected to account for the fact that the genetic level of the female
mates is usually higher than the average population. Thus, Quaas et al. (1979)
and Everett et al. (1979) developed the Sire-Maternal Grandsire model (Everett,
R. W., and J.F. Keown, 1984). This model was used by the Cornell University
to evaluate the bulls in North-eastern USA from 1979 to 1989, increasing the
number of traits since 1982. Besides the hypotheses of the initial model, the new
model also stipulated that the daughters of the maternal grandsires must be a
random sample of the daughter population of all maternal grandsires. Later, it
was shown that this hypothesis didn’t verify in practice, because the daughters
of a bull which calved subsequently, had already been selected after their first
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calving, particularly if they were of second parity and following, which breached
the assumption that they were a random sample.

Animal Models. Year 1989 was the start of a new era in the history of the
genetic evaluation of the dairy cattle, by the introduction of the Animal Model.
This became practically possible due to the progress in computer hardware. The
BLUP methodology applied to the animal models rapidly became the reference
method for the genetic evaluation of the animals. The notion of individual animal
model was introduced explicitly by Quaas and Pollak (1980), although Hender-
son (1949) referred to this aspect in his paper on the estimation of the genetic
and environmental trend. The animal model is the procedure that estimates the
breeding value by describing the genetic effect of the progeny, not of the parents.
Most previous models (contemporary comparison, herdmate comparison, and Sire
Model) used only progeny performance for comparison. For these methods, dam
evaluation was secondary and was done using the genetic evaluation of the sire.
The animal model uses all sources of information: own performance, performance
of the collateral ascendants and of the descendants. Compared to the method of
the selection indices (BLP), BLUP methodology applied to an animal model has
several advantages: it uses the information on all known relatives of an individual,
thus enhancing the accuracy of prediction; it facilitates the genetic comparisons
between the animals that performed in different environments and different peri-
ods of time; it facilitates the genetic comparisons between animals with different
sources of information (different number of kin and different number of records for
the same trait) - for instance, a cow with three lactations can be compared with a
heifer; it allows genetic comparisons between animals that have been selected at
different selection intensities; it allows an accurate measurement of the selection
response. The implementation of the Repeatability animal model by USDA (in
July 1989) was one of the greatest changes ever of the national methodologies of
evaluation. VanRaden et al. (1989) have shown that the animal model was 3-5%
better than MCC in terms of the EBV accuracy for dairy cattle. Although 1989
is cited as reference year for the practical implementation of the Repeatability an-
imal model, this event took place earlier (1982) in Romania. Appendix B presents
the “Romanian Animal Model, 1982”, the contribution of the Romanian researcher
Corneliu Drăgănescu to the development and implementation of a program for the
genetic evaluation of the dairy cattle in Romania.

Multiple Across Country Evaluation. The intensification of semen
export from USA and Canada to countries all over the world practically global-
ized dairy cattle breeding. This aspect complicated the process of sire selection.
Thus, the importing countries were confronted with the difficulty of selecting the
best bulls among the imported bulls vs. the local bulls. Thus, objective criteria
had to be set for the identification of the best sire stock. This was no easy task
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because each country had its own system of performance control and genetic eval-
uation, as well as different ways of expressing the breeding value of the bulls. The
International Dairy Federation (IDF) proposed in 1981 to use regression equations
for the conversion of the breeding value depending on the (importing/exporting)
country. Thus, Goddard (1985) and Wilmink (1986) modified the regression equa-
tions to account for the accuracy of the breeding values in each country, but the
procedure was shown to be very little efficient, the conversion being often lim-
ited to pairs of two countries. This prompted for additional work to enhance
the working efficiency. The new method proposed by L.R. Schaeffer (1985) used
the linear model which had the country where the genetic evaluation was done,
the genetic group of the bull and the estimated breeding value as inputs. The
model didn’t account for the genotype-environment interaction, however. To deal
with this aspect, L.R. Schaeffer (1994) also introduced the genetic correlations
between the countries of origin of the bulls, which made it possible to obtain dif-
ferent classifications of the bull in different countries. The new method, known
as MACE (Multiple Across Country Evaluation) was a crucial development in
the field of the international genetic evaluation and it smoothed the way towards
the establishment of INTERBULL (The International Bull Evaluation Service,
Uppsala, Sweden). MACE was combining in an optimal manner the relationship
information both at the national level and across countries.

Animal Model Multiple Traits. Even though the animal model for
a single trait had become applicable in 1989, the variant for multiple traits at
the individual level was not feasible, also due to the limitations of the computing
capacity. However, there had been some limited applications, based on the Sire
Model, for some breeds of meat cattle. One way of making applicable the mul-
tiple traits animal models was to use the procedure of data transformation. The
best known and most used procedures of data transformation were the canonical
transformation and the Cholesky transformation. Once transformed, the obser-
vation data, one may revert to the separate evaluation of the individual traits,
which meant a consistent reduction of the required computing capacity. After
the breeding values were computed on a transformed scale, they were ultimately
reverted to their original scale using a retransformation procedure. Besides the
traits of milk production (amount and quality of milk), the breeders associations
have also been interested in the evaluation of the type traits because of the re-
lations between the type traits and the production. The phenotypic expression
of each type trait can be known when the primiparous cows are evaluated. In
Canada, the Holstein cows are evaluated for 30 type traits, while in Europe they
are evaluated for 16-20 type traits, with variations in individual countries. Be-
cause all traits are measured/observed on all primiparous cows and because their
expression is influenced by the same environmental factors, the best way to ana-
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lyse the animal model is the canonical transformation. Another variant may be
the threshold models because some traits are evaluated in a subjective manner.
However, a trend towards the simultaneous genetic evaluation for multiple traits
can be noticed worldwide, because this makes it possible to use the information
supplied by the genetic correlations between the traits. This means a higher ac-
curacy of the obtained EBV, particularly for the traits with low inheritability, or
when information lacks for some traits.

Test Day Models. Until 1998, the biometric model for the genetic eval-
uation of dairy cattle relied, according to ICAR norms, on the Lactation Model,
which describes linearly in terms of genetic and environmental effects the produc-
tion of milk/fat/protein per standard lactation, i.e. 305 days from the start of
lactation. Thus, the intra-lactation genetic and environmental variation was set
to be residual variance, which meant that, implicitly, the intra-lactation selection
information was not used. This solution, accepted by INTERBULL regulations
until not long ago, relied on the limitations due to the computing capacity. The
explosive development of the computing capacity made possible the implement-
ation of the Test-day model, which records the performance of the test-day, the
sum of the productions of milk/fat/protein in the test-day. The linear description
of the test-day performance in terms of genetic and environmental effects can be
done in several ways. A dominant idea was that, same as the performance, the
effects follow the lactation curve. Thus, the breakdown of performance shows
regressions with constant coefficients for the fixed effects and regressions with
random coefficients for the additive and environmental effects. Thus, the model
allowed the construction of two categories of lactation curves: the first one, com-
mon for all contemporaries, and the second one particular for each individual cow.
The first type of regression was called Fixed regression test day model, which af-
fects similarly all the contemporary animals, while the second type of regression
was called Random regression test day model because the values of the coefficients
vary from one animal to the other. The major advantage of using the test-day
model is the possibility to correct the records for the environmental factors whose
impact changes during lactation, between two test-days. The stage of lactation
is a basic element of such model; between the stage of lactation and the amount
of milk there is a non-linear relation. Several types of functions are used to draw
the lactation curve, such as Wood, 1967; Wilmink, 1987; Ali and Schaeffer, 1987;
Legendre polynomials, Spline function. These mathematical functions have been
incorporated by different authors in biometric models with the purpose to calcu-
late the genetic value of the sires. Depending on the components of the model
we have the Fixed regression test day and the Random regression test day (based
on Ali and Schaeffer functions, Legendre polynomials, and the Spline function).
Another biometric model used to analyse the records is the Autoregressive re-
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peatability animal model developed by J. Carvalheira et al. (1998; 2002). The
calculations related to these models are presented in detail, so that the reader
may understand these categories of models. The most accurate results seem to
be provided by the model that includes the Spline function.

Genetic Changes. The success of applying any breeding program is
measured by the amount of genetic progress achieved by the populations along
the successive generations. Knowing these achieved values is necessary in order to
justify the usefulness of the genetic evaluations and of the new working method-
ologies. This aspect is included in a chapter dedicated to measuring the genetic
progress in the dairy cattle populations. All the procedures used to measure the
genetic progress in dairy cattle are presented in historic succession. These meth-
ods are closely related to the procedures used to estimate the breeding value.

Threshold Models. The traits that don’t have normal (Gauss) distri-
bution must be analysed using non-linear models. These traits have a discrete
variation and follow the Poisson distribution, the analysed individuals falling into
distinct classes. Such examples are the calving easiness, resistance to diseases, lit-
ter size, number of embryos and even some outer traits determined by subjective
evaluation. Thus, for the calving easiness the animals can be classified at least
into three distinct categories: 1. Unassisted calving, 2. Assisted calving, and 3.
Dystocia. Although the Threshold models are best fitted for the analysis of the
data with discrete variation, given the complexity of calculations, most genetic
breeding programs worldwide used linear models. The classifications of sires using
linear and non-linear models are very closely correlated (0.99).

Survival analysis. Survival analysis was initially used in other areas of
activity (human medicine or reliability analysis). The first one to propose the
use of this technique in animal breeding was S.P. Smith (1983), in his PhD dis-
sertation “The extension of failure time analysis to problems of animal breeding”.
Cornell University, Ithaca, N.Y., USA. This method was subsequently reviewed
and improved by Smith and Quass, 1984 and by Smith and Allaire, 1986. Ducrocq
and Solkner (1994) developed a set of software for the analysis of survival data in
cattle (The Survival Kit, a Fortran package for the analysis of survival data. In
Proceedings of the 5th World Cong. on Genet. Appl. to Livest. Prod.). Survival
analysis is defined as a set of analytical methods for data analysis when the output
variable is the time left until the occurrence of a particular event, which may by
the culling date, in the case of cows. The time from the first calving to the date
of culling is called the average time of exploitation or the productive life. Usually,
a full analysis of the actual productive life can be done only after all animals
have been culled, which makes the final decision of identifying the best parents
to be tardive, thus inefficient. One way to make an efficient analysis is to use the
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information from live animals, so we can take into consideration the productive
life achieved up to a specific point in life, before culling. These are called censored
observations and they can be used to predict the potential moment of culling, one
solution to estimating the productive life. The Weibull regression can be used
to estimate the breeding value of the productive life, which a basic component
of the survival analysis. Such working procedure has been available since 1996
within the Verden computer centre (Germany; The Survival Kit, 1998). Many
countries currently use the algorithm developed by Ducrocq and Solkner (1994),
for survival analysis. An alternative to that algorithm is the use of the Random
regression test day because it is easier to apply than the first one, while it also
allows re-ranking animals at different moments in time, according to Jamrozik et
al. (2008).

Genomic analysis. One way to enhance the annual genetic progress is
using information from genetic markers. The marker-assisted selection (MAS) has
several advantages: 1) it can be applied for both sexes for the sex-limited traits;
2) it is much more efficient for the traits whose cost of testing is prohibitive, or
which are very hard to test (resistance to diseases); 3) it can be applied very
early for the reproduction traits or for the traits that are measure on the carcass.
The genetic markers are useful for the identification of the chromosome parts
that are associated to particular production traits. The use of information from
the genetic markers correlated with the quantitative trait loci (QTL), next to
the phenotypic information and to the genealogical data adds accuracy to the
prediction of the breeding value, thus of the selection. This type of selection is
highly efficient for the sex-limited traits and for the traits with low heritability,
such as milk production in dairy cattle. It can also be used for the selection
of young bulls before progeny testing, which means a shorter interval between
generations and a higher annual genetic progress. To be useful, markers needed
an LD of 30% or more. High LD means that an allele of the marker is on the
same stretch of DNA as the favourable allele of the gene. Marker-assisted selection
has its limits, because the intensity of the relation between marker and the QTL
may decrease in time. A recommended alternative that has been used recently
is the use of the huge variation of DNA following its sequencing. The most
widespread form of genome variability is the Single Nucleotide Polymorphism
(SNP). Consequently, the SNP have been increasingly used in the recent years
for breeding value estimation in dairy cattle too, which is why we are now calling
the process “Genomic selection”. The basic requirement for selection efficiency
is that the markers are in linkage disequilibrium with the QTL. The practical
implementation of the genomic selection requires estimating SNP effects within
a reference population and the prediction of the breeding value for the animals
outside that population. Misztal et al. (2010) developed a one-step method
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which uses the phenotypic, genealogic and genomic information to determine the
genomic breeding value. In conclusion, the purpose of this book is to describe the
evolution of the methods of genetic evaluation of the dairy cattle, starting with
the daughter-dam comparison and ending with genomic selection, using several
landmarks: description of the working method, showing the hypotheses and the
statistic properties of the biometric models; numeric application for each method
and, which is very important, justification of the transition from one working
methodology to another.

In a book of this domain, it is impossible for the authors to balance the
invaluable contribution of all those whose concepts and ideas are presented. We
refer to basic and applied scientists in research institutes, universities. We owe
a lot to the people in all these sectors with whom we communicated and whose
scientific work we studied and commented.

At the local level, Romanian authors would like to acknowledge the en-
couragement, comments and suggestions we have had in this work from Professor
Condrea Drăgănescu, Professor Popescu Ştefan Vifor. Also to Mihai Roman,
Cristiana Grosu, Oana Bărbulescu, Dan Bărbulescu assisted us in the English
version. We are grateful to Ms Doina Argesanu, the script supervision team, for
the work to convert our digital script into a readable form.

Bucharest, 2013 Authors
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Chapter 1

Genetic Evaluations

HORIA GROSU
P. A. OLTENACU
LARRY SCHAEFFER

1.1 Early History

The dependence of phenotype on genotype in dairy cattle has been con-
sidered since the late 19th century. Branth (cited by Bonnier, 1936), a Danish
farmer, said (1891) that “the ability of a cow to produce more or less milk fat,
from the feed it eats, depends on heredity”. Also, the outer look of an animal
cannot provide information on its ability to produce high fat or low fat milk.
Such evaluation could be done using the pedigree, but a better approach is evalu-
ation by progeny. Although Branth instinctively realised the role of the progeny
for the genetic evaluation of a sire, he conducted no special investigations in this
direction.

Branth’s ideas have been further developed by Sedelholm (cited by Bon-
nier, 1936), who verified them on his own farm (1900). Practically, Sedelholm
compared the daughters with their dams in terms of milk fat, proving that bulls
have a variable influence on daughter records. Historically, this was the first
real attempt to apply selection by progeny in cattle. After 1920, the research to
identify the best animals in a dairy cattle population entered a new stage with
the focus on the genetic evaluation of bulls. The scarcity of information regard-
ing the role of genetics in the evolution of domestic animals is likely responsible
for slow progress. Although Gregor Mendel had elaborated the laws of heredity
as early as 1866, they were not understood for almost 40 years. Rediscovery of
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2 CHAPTER 1. GENETIC EVALUATIONS

Mendel’s laws after 1900, should have provided a fresh and strong impulse to the
field of genetic breeding. However, this happened almost a half century later due
to a) the delayed acceptance of mathematics as an instrument of investigation in
biology, and b) the failure to see clearly that genetic breeding does not refer to
individuals, but rather to the population (Drăgănescu, 1979).

Quantitative genetics evolved as a science only after 1920 based on the
works of R. A. Fisher (The Correlation Between Relatives on the Supposition
of Mendelian Inheritance, 1918) and S. Wright (Mating Systems, 1921). Ten
years later, the basics of population genetics had been laid out by the same two
scientists: R. A. Fisher (The Genetical Theory of Natural Selection, 1930) and
S. Wright (Evolution in Mendelian populations, 1931) and by the book of J. B.
S. Haldane (cited by Drăgănescu, 1979) “A Mathematical Theory of Natural and
Artificial Selection”. These papers outlined the modern theory of evolutionism,
population genetics and quantitative genetics, pioneering fields which had set the
groundwork for the science of genetic breeding (J. L. Lush, 1945). The first books
approaching genetic evaluation of bulls in a scientific manner were published after
clarification of the principles governing the genetic evolution of the populations
of domesticated animals (Wright, 1930, 1931, 1932; Lush, 1931, 1933, 1935, 1944,
1945). The works of these two giants of the science of animal breeding formed
the basics for the development of new procedures of genetic evaluation of the sire
by their disciples (L. N. Hazel; C. R. Henderson; L. D. Van Vleck).

1.1.1 Artificial Insemination

The first usage of artificial insemination (AI) in dairy cattle was around
1936. Before 1936, bulls were used through natural service and usually limited
in the number of herds in which they had daughters (usually only 1 or 2). AI
technology made it possible for dairy bulls to produce many thousands of progeny
across many herds, if the bulls were genetically superior or popular with breeders.
The need to assess the genetic merit of dairy bulls became more urgent with such
profit potential from the sale of bull semen. Large progeny group size naturally
led to greater accuracy in genetic evaluations of bulls. The need to make ge-
netic evaluations as accurate as possible was driven by artificial insemination and
competition among organizations and countries.

In Europe, organizations that computed genetic evaluations were the same
companies that collected and sold bull semen, and sometimes were also concerned
with breed registry. In North America, AI organizations were not part of genetic
evaluation, which was undertaken by the United States Department of Agricul-
ture, or Agriculture Canada. AI provided the impetus to improve genetic eval-
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uation methods. AI was not immediately available in other species due to the
inability to freeze semen in other species and afterwards have high conception
rates.

1.1.2 Computers

Genetic evaluations are very suitable for computing machines, but ad-
vances in genetic evaluation procedures had to often wait for the advances in
computer hardware. The modern day history of computing seems to begin in
1939, although the abacus was around since 2400 BC. The binary number system
was described by Pingala (India) in 300 BC, and negative numbers were shown
by the Chinese in 100 BC. Pascal in 1642 invented a mechanical calculator.

The first mechanical computer was designed by Charles Babbage in 1822
which by 1834 would have a program stored on punched cards. Funding was with-
drawn when Babbage had trouble finding machinists who could make the parts
that he needed within the exact tolerances that he required. Adding machines
were invented often through the early 1900’s. Vacuum tubes and circuit designs
appeared by 1920. In 1928 IBM standardized the use of punch cards for storing
data and programs. So while the basics of animal breeding and population genet-
ics were being written, modern computers were also beginning to develop, but in
the 1920’s mostly adding machines and card counters were available for use, thus
limiting the methods that could be used for genetic evaluation.

While AI was a driving force in genetic evaluations, developments in com-
puter hardware were often lagging, and therefore limited the sophistication that
could be applied to genetic evaluation, at a given point in time. For example,
Henderson’s Best Linear Unbiased Prediction procedure was known in 1949, but
was not actually applied until 1970. The animal model was known in the 1960’s,
but could not be applied until 1989 due to insufficient computing power. Test-day
models were discussed in the 1970’s, but were not implemented until 2000. Gen-
omics, through single nucleotide polymorphisms and gene sequences, is now chal-
lenging computer technology just to be able to store the information on thousands
of animals, and to process the information efficiently. The connection between
computer hardware and genetic theory will likely continue for many decades.

The aim of the book is to describe the evolution of genetic evaluation
methods in dairy cattle by discussing their calculations, assumptions, and stat-
istical properties, and the reasons for the advancements that were made at those
points in time. Details of the theories and development of methods can be found
in other texts.
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Chapter 2

Daughter-Dam Comparisons

HORIA GROSU
PASCAL ANTON OLTENACU
LARRY SCHAEFFER

2.1 The Beginning

From the early 1900’s to the 1960’s genetic evaluation of dairy bulls was in
the Era of Daughter Averages. Record keeping systems in North America began
in 1905, and computing systems were limited to adding machines. The easiest
quantities to calculate were averages, variances, and covariances. Rice (1933)
listed criteria for a useful index (genetic evaluation):

1. The evaluations should be understandable by the users. Producers were
familiar with lactation production figures, so that the evaluations should
relate directly to lactation production.

2. The evaluations should include both dam and daughter records. This con-
clusion was not reached immediately, but generally all of the scientists con-
curred on this point by the 1930’s.

3. The evaluations must clearly indicate how much the production level of the
progeny would be improved. Producers were not used to looking at rankings
of bulls, but only production levels.

Daughter-Dam Comparisons were the main interest in comparing dairy
bulls. Many different formulas for combining daughter averages and dam averages

7
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were proposed from 1925 to 1944. Some of the areas of concern regarding these
proposals were as discussed in the following sections.

2.1.1 Merit of Dams

The main advantage of a daughter-dam comparison was the ability to ac-
count for the genetic worth of the dams as they contribute to a bull’s daughter
records. On the other hand, daughter records were not contemporary with dam
records with often a gap of at least two and a half years between records, even
within the same farm. If dam and daughter records are made in different herds,
then the environmental effects could be even larger than for within herd compar-
isons.

2.1.2 Relatedness of Bulls and Dams

If bulls were related to each other, as some would be, the exact relation-
ships were not considered, and another assumption was that bulls were not related
to any of the dams to which they were mated. This could also have been violated
in some instances, particularly when bulls were used within herds prior to arti-
ficial insemination. In general, the assumption was that bulls were unrelated to
other bulls and to all mates.

2.1.3 Years

As years go by, hopefully genetic change has occurred, and therefore, the
mates for younger bulls will have a higher genetic merit than the mates of bulls
in earlier years. If a bull has daughters over a number of years, and if the mates
are becoming genetically better, then the deviations of the daughters’ averages
compared to mates should decrease over time. Proposals did not allow for positive
or negative genetic trends.

2.1.4 Dams and Daughters

Dams would most likely have more than one daughter, possibly sired by
different bulls over their lifetime. Thus, the dams average phenotype would be
used over and over in the indexes of different bulls. Given the computational
limitations in those days, there was little that could be done to account for this
situation.
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2.1.5 Number of Daughter-Dam Pairs

The variability of means is a function of the number of observations going
into the mean,

V ar(mean) =
σ2

n
,

where σ2 is the variance of individual observations and n is the number of obser-
vations in the mean. Thus, bulls with few daughter-dam pairs would have greater
variation than bulls with many daughter-dam pairs. The result is that bulls with
few pairs could rank higher than bulls with many pairs or could rank much lower.
The likelihood of bulls with few pairs of daughter-dams to rank in the extremes
was greater than for bulls with many pairs.

2.1.6 Other Considerations

Criteria like having evaluations that have a high correlation with the true
breeding value of the bull, or evaluations that are unbiased or minimum variance
were not considered in the proposals except for Bonnier (1936). These ideas did
not occur until later with Lush, Henderson and others. At this time, probably no
animal breeders knew about matrix algebra, least squares analyses or analysis of
variance (1918). The application of mathematics to biology was not very popular.

2.2 Theoretical Concepts

2.2.1 A Daughter Record

Let the record of a bull’s daughter be represented as

Xijkl = µ + .5 si + .5 dj + mk + pk + eijkl

where

Xijkl is the phenotypic observation on daughter k of sire i and damj,

.5si is an average half of the sire’s true breeding value, which is the object to be
estimated,

.5dj is an average half of the dam’s true breeding value,

mk is a Mendelian sampling effect of the kth daughter, generated by the mixing
of alleles from the sire and dam,
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pk is a permanent environmental effect common to all records on daughter k, and

eijkl is a residual error specific to this one record.

With respect to daughter k, all factors in the equation, si, dj , mk, and
pk are constants. The expected value of eijk is always zero. No other factors
are assumed to affect the daughter record. In practice there are many factors
that could contribute to Xijkl, but the assumption was that adjustments could
be made for most of these factors.

Thus,

E(Xijkl) = µ + .5 si + .5 dj + mk + pk

2.2.2 Repeated Daughter Records

Consider the same daughter making n records, the average would be

Xijk. = µ + .5 si + .5 dj + mk + pk +
1

n

n∑
l=1

eijkl

As n becomes larger, the average of the eijkl should approach zero.

2.2.3 Several Daughters

Consider the average of q daughters of sire i, the average would be

Xi =
1

q
Xi... = µ + .5 si + .5 d + m + p + ei

and with large q
(m + p + ei)

should approach zero. Thus,

2 (X − A) = si + d,

where A is the breed average estimate of µ. If the bull is mated randomly to
dams, then d should also approach zero.
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2.2.4 Dam Records

Similarly, the average of n dam records could be represented as

Y j = µ + dj + pj + ej.

where

Y j is mean of n record of dam j,

µ is the breed mean,

dj is assumed to be the dam’s total additive genetic effect, or true breeding value,

pj is the dam’s permanent environmental effect, and

ej is an average residual effect that should tend to zero as n increases.

Finally, the average of the dams or mates of the bull that produced the
daughters of the bull would be

Y = µ + d + p + e,

where p and e are expected to tend towards zero over a large number of dams,
but d is expected to differ between bulls because of differential usage of bulls on
dams.

2.2.5 Bull Estimated Breeding Values

Combining the above results, then a bull’s estimated breeding value would
be given by

2(X − A) = si + d

(Y − A) = d

si = 2(X −A) − (Y −A)

= −A+ 2 X − Y
= −A+ 2 (X − .5 Y )

assuming that q is large enough so thatm, p, and ei, in the daughter average go to
zero, and p and e in the dams’ average also goes to zero. The proposed methods
in this chapter vary around this final formula by changing the assumptions or
making new assumptions.
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2.3 A General Expression

Graves (1925) was the first to use Daughter-Dam Comparisons under USA
conditions (L. D. Van Vleck, 1985). Later on, the method was adopted officially
(1935) by the US Department of Agriculture and used for about 30 years until it
was replaced by the Herdmate Comparison Method (1962).

Several indexes were developed during this period for the genetic evalu-
ation of dairy bulls, most of them being variations on the basic method (Daughter-
Dam Comparison). As a rule, when evaluating the genetic merit of bulls, the
average record of the daughters is expressed as a deviation from the average re-
cord of the dams. Before calculating the index, the records of both categories
of females were corrected for age, length of lactation and times milked per day
(305-2X-ME). If females had several previous lactations, their average was used
in the calculations as well.

A number of different indexes were proposed over the years by Hansson,
Yapp, Gifford, Pearl, Gowen, Turner, Goodale, Wright, Norton, Allen, Rice, and
Lush. Among various indexes, those of Hansson-Yapp (recommended by Lush for
intensive use, 1933) and Rice were used the most.

J. L. Lush (1944) showed that the proposed indexes were particular cases
of a general expression:

M = a + c (X − b Y ) (2.1)

where

M is the estimated merit of a bull, non-observable,

X is the average record of a bull’s daughters,

Y is the average record of the dams, and

a, b, and c are constants.

Some key assumptions about this general expression are that

• X and Y are adjusted perfectly for age and season at calving, lactation
length, and number of times milked per day.

• The differences in environments between the years in which dams and daugh-
ters made records were negligible.
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BecauseX and Y are the only random variables in the indexes, the manner
in which these two components are combined determines the differences between
the methods. If a and c are constants used on all bulls, then if b is the same
between two methods, then bulls will rank identically for those two methods. The
differences between bulls may vary, but the rankings will be identical. In a few
proposed methods, c differs from bull to bull based on number of daughter-dam
pairs, or some other parameter, and thus, rankings of bulls could be different.

The daughter average proposed by Gifford (1930) was the simplest index,
where a = 0, b = 0, and c = 1, thus

M = X.

However, an added assumption for this index is that the genetic level of dams is
equal for all groups of bulls’ daughters. This drawback quickly led to daughter-
dam comparisons.

A table of the uniquely different methods are given in Table 2.1.

Note that the Hansson-Yapp, Rice, and Allen indexes all use X − 0.5Y ,
and thus, would rank bulls identically.

Similarly, the Graves and Pearl indexes use X − Y although Pearl made
calculations within lactations rather than across lactations. Wright (1932) also
used X − 0.5Y , but the coefficient in front of this term differed among bulls
depending on the number of daughter-dam pairs.

Turner (1925) concluded that dams or mates of bulls would have only a
minor role in trait inheritance, and thus, daughter averages based on at least five
daughters would be an accurate indicator of a bull’s transmitting ability. If dams
could be ignored, then all daughters’ records could be used, even if the records of
the dam were not available. More daughters would mean greater accuracy.

Meanwhile, Graves (1925) and others believed that dams did contribute to
daughter averages, and good mates usually led to better daughter averages. The
expected future progeny average was shown to be the average of the sire M and
dam’s record average.

Pearl (1930) argued that daughter first lactation records should be com-
pared to their dam’s first lactation records, then second lactation records, and so
on. Then the average of those differences taken for M . The idea was that this
would eliminate the need to require accurate age at calving adjustments across
lactations.

Wright (1932) incorporated the number of daughter-dam pairs (q) per bull.
His M varied between the breed average when q was 0, and 2(X − .5Y ) when q
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Table 2.1: Proposed Daughter-Dam Indexes

Name Year Formula
Högström 1906 M = −2 A + 4 (X − .25 Y )

Pearl 1919 M = 0 + 1
∑

(X − 1 Y )
Sum within lactations

Graves 1925 M = 0 + 1 (X − 1 Y )

Hansson-Yapp 1925 M = 0 + 2 (X − .5 Y )

Turner 1925 M = 0 + 100
85 (X − .15 Y )

Goodale 1927 If X > Y ,
(Mount Hope) M = 0 + 1.429 (X − .429

1.429 Y )

If X < Y ,
M = 0 + 3.333 (X − .7 Y )

Gifford 1930 M = 0 + 1 X

Wright 1932 M = 2
q+2A + 2q

q+2 (X − .5 Y )

q is no. of pairs
Rice 1933 M = .5 A + 1 (X − .5 Y )

A is breed average
Bonnier 1936 M = 0 + 1

1−β (X − β Y )

β = Cov(X,Y )/V ar(Y )

Bonnier 1936 M = 0 + (1− α) X + α Y
α = (σ2

X
− σX,Y )/(σ2

X
+ σ2

Y
− 2σX,Y )

Lush 1941 M = −F + 2 (X − .5 D)

D =Average of nh2

1+(n−1)r (Y − F )

n is number of records on dam
F is the farm-year average

Allen 1944 M = A + 2 (X − .5 Y )

was large. Thus, for two bulls with the same progeny average, the bull with the
greater q would have the greater M .

Lush et al. (1941) was concerned about the number of records in the dam’s
averages. There could be 1 to 5 records per dam, and all records were being used,
even if the daughter had only one record. His method involved heritability and
repeatability as in traditional selection index formulas. The dam’s record average
was deviated from the farm average, and then this was weighted by

nh2

1 + (n− 1)r
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where h2 is heritability and r is repeatability, and n is the number of records of
the dam. The average of all dams in the farm was then subtracted from each
daughters’ record average. Therefore, females without dams could be included.

Bonnier (1936) derived formulas that tried to have minimum variance in
M . The result was a regression on daughter and dam record averages. Two dif-
ferent methods were derived in this manner. Goodale (1927) considered grouping
dams according to their daughter averages. The methods in Table 2.1 show that
two pieces of information, daughter average records and dam average records,
could be manipulated in different ways, but which method among those was the
best? All methods were biased by the environmental differences between dam and
daughter records. The methods could also have been affected by the adjustment
factors for age, lactation length, and number of times milked per day depending
on how those factors were estimated.

2.4 Numerical Example

Assume a breed average production level (age corrected, lactation length
of 305-d, and twice a day milkings) of 6500 kg with a variance of 60,000 kg2. Let
the heritability be 0.25 and the repeatability be 0.40. Below (Table 2.2), is the
information on two bulls .

Table 2.2: Daughter-Dam Averages for Two Bulls

Bull No. of No. of records Daughter Dam
pairs per dam Average, kg Average, kg

Babe 5 3.4 7800 6600
Jake 10 3.7 6200 6400

Based on simple daughter averages, then Babe would rank above Jake by
1600 kg. The results for each of the indexes is given in Table 2.3.

Every index gives different M for each bull, and the difference between
Babe and Jake also varies. However, all agreed Babe was superior to Jake.

2.5 Simulation Study

To determine which index gave closer agreement to the true genetic merit
of the bulls, a simulation study was undertaken. Assume a trait with heritability
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Table 2.3: Comparisons of Two Bulls

Name Formula Babe Jake
Högström M = −2 A + 4 (X − .25 Y ) 11600 5400
Graves M = 0 + 1 (X − 1 Y ) 1200 -200

Hansson-Yapp M = 0 + 2 (X − .5 Y ) 9000 6000
Turner M = 0 + 100

85 (X − .15 Y ) 8012 6165
Goodale If X > Y ,
(Mount Hope) M = 0 + 1.429 (X − .429

1.429 Y )

If X < Y ,
M = 0 + 3.333 (X − .7 Y ) 8315 5732

Gifford M = 0 + 1 X 7800 6200
Wright M = 2

q+2A + 2q
q+2 (X − .5 Y ) 8286 6083

q is no. of pairs
Rice M = .5 A + 1 (X − .5 Y ) 7750 6250

A is breed average
Bonnier M = 0 + 1

1−β (X − β Y ) 9600 5900
for β = 0.6

Bonnier M = 0 + (1− α) X + α Y 7320 6280
α = 0.4

Lush M = −F + 2 (X − .5 D) 9057 5944
D =Average of nh2

1+(n−1)r (Y − F )

n is number of records on dam
F = 6500

Allen M = A + 2 (X − .5 Y ) 15500 12500

of 0.25, and a repeatability of 0.40. The variance parameters, in kg2 were

σ2
a = 15, 000, genetic variance
σ2
p = 9, 000, permanent environmental

σ2
h = 6, 000, herd-yr variance
σ2
e = 30, 000, residual variance

with an overall trait mean of 6, 500 kg.

The base population had 300 bulls and 5,000 cows all assumed to be un-
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related and non-inbred. The model to simulate a phenotypic record was

yijk = µ+ hi + aj + pj + eijk

where

yijk is the phenotypic record,

µ is the overall mean of 6500 kg,

hi is a herd-year contemporary group effect,

aj is an animal additive genetic value, or true breeding value,

pj is an animal permanent environmental effect, and

eijk is a residual effect.

Phenotypes were made for all animals (males and females) even though
the trait simulated was 305-d lactation milk yield. The phenotypic records of
males were used to select among bulls for the next generation of breeding males,
but were not used for any other purpose.

Each generation, 5,000 females were mated to one of 300 bulls to produce
one bull calf and one female calf per pregnancy.

The daughter was assigned to one of 200 herds within a generation. Daugh-
ters produced a lactation immediately, and could be chosen as a dam for the next
generation. Thus, the generation interval was greatly shortened.

Male calves could be selected for breeding in the next generation. All dams
and progeny were ranked on their latest phenotype and the top 5000 retained for
breeding in the next generation. Similarly all bulls and male progeny were ranked
on their “phenotype” and the top 300 kept for breeding the next generation.
Selection intensity for females was 5 out of 10, and for males was 3 out of 53.

Pedigrees and inbreeding coefficients were computed for all animals. Six
generations of breedings were conducted, and all resulting female phenotypes were
used to calculate indexes of bulls.

Each method in Table 2.1 was applied to the simulated data and the M
values of the bulls were correlated with the true breeding values of the bulls. Bulls
had from 5 to 90 daughter-dam pairs.

Dams and daughters could have from 1 to 5 female progeny. The number
of bulls in total ranged from 1072 to 1118. The results for 4 replicates are shown
in Table 2.4.
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Table 2.4: Comparison of Accuracies

Replicates
Name Formula 1 2 3 4
ID Bulls 1117 1072 1099 1118
Högström M = −2 A + 4 (X − .25 Y ) .88 .88 .87 .88
Graves M = 0 + 1 (X − 1 Y ) .27 .26 .30 .32
Hansson-Yapp M = 0 + 2 (X − .5 Y ) .81 .80 .81 .82
Turner M = 0 + 100

85 (X − .15 Y ) .89 .89 .88 .89
Goodale If X > Y ,
(Mount Hope) M = 0 + 1.429 (X − .429

1.429 Y )

If X < Y ,
M = 0 + 3.333 (X − .7 Y ) .69 .68 .71 .72

Gifford M = 0 + 1 X .89 .89 .88 .89
Wright M = 2

q+2A + 2q
q+2 (X − .5 Y ) .81 .80 .81 .82

q is no. of pairs
Rice M = .5 A + 1 (X − .5 Y ) .81 .80 .81 .82

A is breed average
Bonnier M = 0 + 1

1−β (X − β Y ) .56 .54 .54 .48
for β = 0.6 .78 .79 .82 .88

Bonnier M = 0 + (1− α) X + α Y .85 .85 .83 .84
α = 0.4 .42 .44 .51 .65

Lush M = −F + 2 (X − .5 D) .89 .88 .88 .89
D =Average of nh2

1+(n−1)r (Y − F )

n is number of records on dam
F = 6500

Allen M = A + 2 (X − .5 Y ) .81 .80 .81 .82

2.5.1 Results of Simulation

The simple daughter average gave the highest correlation with the bulls’
true breeding values. This likely occurred because the assumption of bulls having
mates of equal genetic merit was generally true for all bulls.

Also, herd-year effects were small and random with respect to bulls’ daugh-
ters. The simulation provided ideal conditions for each bull with no biases. Re-
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cords were simulated without age at calving effects, without different lactation
lengths, and all the same number of times milked per day. The only biases would
be those caused by selection of animals to be parents.

The index developed in section 2.5 was equivalent to Rice or the Hansson-
Yapp indices. The better methods were those that subtracted a fraction less than
0.5 of the dam average from the daughter average. Those that subtracted more
than 0.5 of the dam average generally had lower accuracy.

Lush’s index reduces the influence of the average of dams records, but
under certain assumptions would give an index similar to that of section 2.5.

The simulations show that a simple daughter average was more accurate
than any daughter-dam comparison. Comparisons made using real data do not
have the advantage of knowing the true breeding values of the bulls. Splitting
the progeny groups into two, based on the dam averages, and then correlating the
resulting index values would give one measure of accuracy. The assumption then
would be that bulls should rank similarly for either dam group.

Edwards (1932) did this comparison for five indices, and concluded that
the best was the simple daughter average followed by Wright’s index, and then
the Hansson-Yapp index, similar to the comparisons in the simulation.

The belief, however, was that the adjustment for the dam’s average was
necessary, and so Daughter-Dam Comparisons persisted for many years. More
progress might have been made using Daughter Averages.

2.6 References

ALLEN, N. 1944. A standard for evaluation of dairy sires proved in dairy herd
improvement associations. Journal of Dairy Science, 27: 835.

BONNIER, G. 1936. Progeny tests of dairy sires. Hereditas. 22:145.

BONNIER, G. 1946. The sire index. Acta Agriculturae Suecana. 1:321.

EDWARDS, J. 1932. The progeny test as a method of evaluating the dairy
sire. Journ. of Agr. Science, 22, p. 811-837.

GIFFORD, W. 1930. Data necessary to prove pure bred dairy sires. Guernsey
Breeders J. Sept 1.

GOODALE, H. D. 1927. A sire breeding index with special reference to milk
production. Amer. Nat., 671, p. 539-544.



20 CHAPTER 2. DAUGHTER-DAM COMPARISONS

GOODALE, H.D. 1927. Selecting a herd sire. Mt. Hope Farm Pub., William-
stown, Mass.

GOWEN, J. W. 1930. On Criteria for Breeding Capacity in Dairy Cattle. J.
Anim. Sci., 47-49.

GRAVES, R. R. 1925. Improving dairy cattle by the continuous use of the
proved sire. Journal of Dairy Science, 5: 391.

HANSSON, N. 1913. Kan man med fördel höja medelfetthalten i den av vära
nötkrentursstammar och raser lamnade mjöilken? - Centralanst. för för-
söksväsendet pajordbruksomradet. Meddelande 78, p. 1-85.

HÖGSTRÖM, K. A . 1906. Komjölkens fetthalt, dess normala vaxlingar och
arftlighet - Kungl. Landtbruksakademiens handlingar och tidskrift, p. 137-
176.

LUSH, J. L. 1931. The number of daughters necessary to prove a sire. Journal
of Dairy Science 14: 209–220.

LUSH, J. L. 1933. The bull index problem in the light of modern genetics.
Journal of Dairy Science, 16: 501-522.

LUSH, J. L. 1944. The optimum emphasis on dams’ records when proving dairy
sires. Journal of Dairy Science, 27: 937.

LUSH, J. L. , H. NORTON, ARNOLD, FLOYD. 1941. Effects which selection
of dams may have on sire indexes. Journal of Dairy Science, 24: 695-721.

NORTON, H. W., Jr. 1933. Unpublished data referred to by Lush in Journal
of Dairy Science, 16: 501-522.

PEARL, R. , GOWEN, J. W. and MINER, J. R. 1919. Studies in milk secre-
tion. Transmitting qualities of Jersey sires for milk yield, butterfat percent-
age and butterfat. Maine Agr. Exper. Stat. Bull. 281, 89, 165.

RICE, V. A. 1933. Which is the best index? Guernsey Breeders J. 43:238-239
and 261-262.

RICE, V. A. 1944. A new method for indexing dairy bulls. Journal of Dairy
Science, 27: 921.

TURNER, C, W. 1925. A comparison of Guernesey Sires. Mo. Agr. Expt.
Sta. Res. Bul. 79



2.6. REFERENCES 21

WRIGHT, S. 1932. On the evaluation of dairy sires. Proc. Amer. Soc. Anim.
Prod., p. 71-78.

YAPP, W. W. 1925. Transmitting ability of dairy sires. Proc. Amer. Soc.
Anim. Prod., p. 90-92.





Chapter 3

Selection Index
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3.1 Jay L. Lush

Dr Jay L. Lush, the father of animal breeding, was born on January 3, 1896
in Shambough, Iowa. Influenced by Sewall Wright and Sir Ronald A. Fisher, he
developed the selection index method during the 1920’s and 30’s. This work led to
his book, “Animal Breeding Plans” first published in 1948, but used years earlier
on his students. Over his career he advised 26 MSc students and 124 PhDs.
In some way he influenced animal breeding around the globe, either directly or
through his students. Iowa State became the center for animal breeding training
and continues as such today. Dr Lush died on May 22, 1982. He was the person
who changed animal breeding from an “art” into a “science”. It is only fitting to
acknowledge his contributions towards everything that follows in this book. His
main advice to students was “just be productive”.

3.2 Index Equation

The selection index for a single trait was used by Wright (1934) and Hazel
(1942), and was given various names, like “index of combined selection” (Lush,
1947 and Osborne, 1952), or “breeding value index” (Rasch, 1974), or “family
selection” (Gibson, 1995). The first selection indices for cattle were developed by

23
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Harvey and Lush (1952), for the simultaneous improvement of production traits
and body conformation. Legates and Lush (1954) developed an index for the
intra-farm selection of cows for production using records from the cow and its
relatives.

The selection index method was used by Lush (1944) when he determined
the appropriate weight to put on the mate’s information in the daughter-dam
comparisons. The selection index method was also used to derive components
of the contemporary comparisons which followed the daughter-dam comparisons.
This chapter gives a brief overview of selection index methodology.

A simple selection index equation is essentially a regression equation.

M = b1y1 + b2y2 + . . .+ bqyq

where M is the estimated breeding value of the candidate for selection; yi can be
individual records, means of progeny, means of half-sibs, mean of dam records,
or any kind of phenotypic measure on relatives of the candidate for selection.
All yi should be records of animals that are genetically related to the candidate
for selection. The selection index weights, bi indicate the proportion of each
phenotypic measure that goes intoM . The process is to determine the appropriate
weights, bi, for the given information in the index equation. The yi are assumed
to be adjusted for age and season of calving, number of times milked per day,
lactation length, and contemporaries. The yi may also represent phenotypes of
different traits. For example,M might be the milk production estimated breeding
value of the bull, but some of the yi may be progeny means for milk yield, fat
yield, and protein yield.

The M for every candidate is assumed to be based upon the same types
of yi. Thus, for each candidate, there must be the same yi available based upon
the same number of progeny and records per progeny, and so on. Usually that
is not the case and often M are based on different numbers of observations and
progeny.

3.3 Estimating The Weights

Good references for the derivation of selection index equations are Bourdon
(1997), Cameron (1997), Van Vleck (1993), and Henderson (1963), as well as Lush
(1948). To estimate the bi of the selection index equation, the phenotypic and
genetic variances and covariances of the population need to be known. From these,
the variances and covariances among the yi are derived, and the covariances of
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the yi with the true breeding value of the selection candidate. Note that

M = b1y1 + b2y2 + · · ·+ bqyq

=
∑
i

biyi

= b′y

so that

V ar(M) = V ar(b′y)

= b′V ar(y)b

= b′Vyb

IfM is the estimated breeding value, then let a represent the true breeding value.
Then

Cov(a,M) = b′C, and
V ar(a) = Va

where C are genetic covariances of y with a. One property of bi might be to max-
imize the correlation between true breeding value and the index. The correlation
is

ρ(a,M) =
Cov(a,M)

(Va VM ).5

= b′C× (Va)
−.5 × (b′Vyb)−.5

ln(ρ(a,M)) = ln b′C− .5 lnVa − .5 ln(b′Vyb)

To maximize the function, take derivatives with respect to the unknowns, which
in this case is b,

∂(ln(ρ(a,M)))

∂b
=

C

b′C
− Vyb

b′Vyb

To solve, equate the derivative to 0, and solve for b. To do this, we need to force

b′C = b′Vyb

then
Vyb = C

are the equations to solve giving

b = V−1
y C
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Another property might be to minimize the variance of prediction errors,
(a−M),

V ar(a−M) = V ar(a) + V ar(M) − 2Cov(a,M)

= Va + b′Vyb− 2b′C

Take derivatives with respect to b and set to 0, then solve. The result is

b = V−1
y C.

Thus, two derivations give the same result, and the properties that the
correlation of the index with true breeding value is maximized, and the variance
of prediction error is minimized.

3.4 Variance of a Mean

Let a mean be denoted as

y = (y1 + y2 + . . .+ yn)/n

A crude method of obtaining the variance is to square the right hand side of the
above equality, then replace squared terms with variances, and cross-products
with covariances, giving

σ2
y = (nσ2

y + n(n− 1)σy,y′)/n
2

= (σ2
y + (n− 1)σy,y′)/n

The covariance among records depends on what the single observations are.

1. Records on One Animal

σy,y′ = r σ2
y

where r is repeatability of the trait. Then

σ2
y =

(1 + (n− 1)r)

n
σ2
y

for n being the number of records on the animal.
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2. Single Records on a Group of Animals

σy,y′ = ai,i′ h
2σ2
y + ci,i′σ

2
y

where ai,i′ is the additive genetic relationship among the animals in the
group, such as a group of progeny of a bull, then ai,i′ = 0.25 for the case
of half-sibs, or ai,i′ = 0.5 for a group of full-sibs from the same sire and
dam. All members of the group have the same relationship to each other.
Also, ci,i′ is an environmental correlation common to records on members
of the same group, assumed to be made in the same contemporary group,
for example. Then

σ2
y =

1 + (p− 1)(ai,i′h
2 + ci,i′)

p
σ2
y

for p being the number of animals in the group.

3. Mean of Means
Suppose Y = (y1 + y2 + . . .+ yp)/p, where yk is the average of n records on
animal k, and there are n records in each average, then

σ2
Y = [

1 + (n− 1)r

n
+ (p− 1)(ai,i′h

2 + ci,i′)]σ
2
y/p

3.5 Covariances with True Breeding Values

The covariance of n records on a progeny of a bull with the true breeding
value of the bull (T), is equal to

σy,T = aiαh
2σ2
y

where aiα is the additive genetic relationship of the animals in the group with the
selection candidate. Heritability is assumed to be in the narrow sense, so that
h2σ2

y is an estimate of the additive genetic variance only.

3.6 Accuracy of Index

If b = V−1
y C gives the weights for the selection index equation, then the

accuracy of the index, or the correlation between true breeding value and index
value is given by



28 CHAPTER 3. SELECTION INDEX

rTI = (C′V
−1
y C/h2).5

3.7 Example Index

Consider the situation where

y1 is the average of n records on a cow, and

y2 is the average of m records on the dams of the cow

Both y1 and y2 are assumed to be adjusted for age and season of calving,
and other environmental effects, and are expressed as differences from their con-
temporaries. The candidate for selection is the cow, and we wish an index that
combines y1 and y2 into an estimated breeding value for the cow. Assume the
heritability of the trait is 0.25, and repeatability is 0.40.

Assuming the cow and dam are not inbred, then the additive relationship
between daughter and dam is 0.5. The matrix Vy is

(
V ar(y1) Cov(y1, y2)
Cov(y1, y2) V ar(y2)

)
,

and matrix C is

C =

(
Cov(y1, T )
Cov(y2, T )

)
where

V ar(y1) = (1 + (n− 1)r)σ2
y/n

V ar(y2) = (1 + (m− 1)r)σ2
y/m

Cov(y1, y2) = (0.5)h2σ2
y

Cov(y1, T ) = h2σ2
y

Cov(y2, T ) = (0.5)h2σ2
y

The variance, σ2
y , is part of each of the above variances and covariances,

and therefore, can be factored out, thus yielding the equations to solve as
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(
(1 + (n− 1)r)/n (0.5)h2

(0.5)h2 (1 + (m− 1)r)/m

)(
b1
b2

)
=

(
h2

(0.5)h2

)
Let n = 1 record on the cow, and m = 3 records on the dam, then the

index becomes
M = 0.2299 y1 + 0.1604 y2.

The accuracy of the index is

rTI = [(0.2299(0.25) + 0.1604(0.125))/0.25].5

or rTI = 0.5569.

If n = 2 records on the cow, and m = 3, then the index changes to

M = 0.3323 y1 + 0.1391 y2,

and rTI = 0.6339.

Suppose h2 = 0.32 instead of 0.25, and n = 1, m = 3, then

M = 0.2896 y1 + 0.1894 y2,

and rTI = 0.62. Thus, increasing number of records on the candidate and increas-
ing the heritability both increase the weight on the candidate’s own information,
and also increases accuracy of the index.

3.8 Example Index 2

The candidate for selection is now the sire, and the index will be based
upon the average of n records per progeny averaged over p total progeny.

M = b1Y

where
V ar(Y ) =

[
1 + (n− 1)r

n
+ (p− 1)(ai,i′h

2 + ci,i′)

]
σ2
y/p

and
Cov(Y, T ) = ai,αh

2σ2
y

Thus,
b1 = Cov(Y, T )/V ar(Y ).
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Let h2 = 0.25 and r = 0.40, and assume n = 2 records per daughter, and
p = 5 daughters, and ci,i′ = 0.
Then

V ar(Y ) = 0.19

Cov(Y, T ) = 0.125

b1 = 0.65789.

The accuracy is rTI = [0.65789(0.125)/0.25].5 = 0.5735.

3.9 Two or More Traits

Hazel and Lush (1942) and Hazel (1943) developed the concept of aggreg-
ate genotype of an animal, which is a function of the additive genetic values of
the selection candidate for the traits, weighted by their relative economic values,
assuming a linear relation between phenotype and genotype.

If ai is the true breeding value of an animal for trait i, and if wi is the
economic weight for trait i, then the aggregate genotype, H, is

H =
∑
i

wi × ai = w′a

where w is the t by 1 vector of economic weights and a is the t by 1 vector of true
breeding values, and t is the number of traits in the aggregate genotype.

Finding weights for a selection index for more than one trait comes by
increasing C from a column vector (for one trait) to a t column matrix for t
traits. In addition C is post multiplied by the relative economic values.

Vyb = Cw

where b is the vector of weights on each trait.

b = V−1
y Cw

and
M = b′y = w′C′V

−1
y y.

The aggregate genotype often contains more traits than are included in
the selection index. Traits in the selection index may be “indicator” traits which
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are highly correlated with one or more traits in the aggregate genotype.

3.10 Restricted Selection Index

Applying selection on one or more traits usually causes correlated re-
sponses in all traits that are genetically correlated to traits in the index.

Kempthorne and Nordskog (1959) proposed a restricted selection index
where some traits are not to be changed. That meant deriving an index where
the covariance between the index and the true breeding value for the trait not to
be changed was required to be zero.

3.11 Desired Gains Index

Brascamp (1984) showed that the restricted selection index was a special
case of a desired gains index (Pesak and Baker, 1969). The amount of gain desired
in a trait or group of traits is pre-determined and then relative economic weights
are derived which will give that amount of desired gain.
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Chapter 4

Contemporary Comparisons

H. DUANE NORMAN

4.1 Contemporary Comparison

The contemporary comparison sire evaluation contemporary comparison
sire evaluation and the herdmate comparison, initiated in the early- to mid-1950s
provided excellent opportunities to accelerate genetic improvement in production
traits in the countries where they were introduced, well beyond the rather dismal
pace underway at the time. These methods used fairly simple arithmetic calcula-
tions. Both procedures more accurately reflected the genetics contributed by the
sire than the daughter-dam comparisons. The dilemma was illustrated quite well
by A. H. Ward, Director of Herd Improvement of the New Zealand Dairy Board
who stated at the Dairy Farmers’ Conference, Massey College in 1949 “ is there
really anything in this breeding business - or are we just fooling ourselves? Can
the difference in production between cows and herds be accounted for practic-
ally wholly by feeding and management, and high levels of butterfat production
reached without worrying about breeding at all? ” (New Zealand Dairy Board,
1950)

Robertson and Rendel are considered the originators of the Contemporary
Comparison, and Henderson, Carter, and Godfrey are given credit for the Herd-
mate Comparison, both published in 1954. Searle (1964) took issue with these
credits by pointing out that the New Zealand system started in 1950. Other ver-
sions of the contemporary comparison were being used in Sweden and Canada by
1956 (Robertson et al., 1956). There were several differences between the early
evaluations among these groups. In any case, some of the fundamentals related to
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these methods were simmering for several decades in different countries, even back
to 1913 when German workers proposed the principle. The belief that success was
achievable kept ideas emerging thereafter.

The distinction between the contemporary and herdmate comparison see-
med obscure from the beginning and became even more so with time. The terms
contemporaries and herdmates often referred to the other animals (cohorts) to
which the sire’s daughters are compared. To others, contemporaries meant anim-
als performing at the same time or meant those animals of a similar age. Possibly
adding to this confusion was that some procedures initiated in countries as a com-
parison among first lactation records later included all lactation records, and at
that point could have been renamed. Nevertheless, if these had been the only
differences between these procedures, then whichever method was more effect-
ive would have been determined largely by how well environmental effects were
identified, estimated, and adjusted for prior to comparing the bull’s daughters to
their cohorts. Where contemporaries are thought of as animals of a similar age to
the bull’s daughters (i.e., those having the same or similar parity numbers), any
deviation in yield caused by age differences between animals being compared is
expected to be smaller for contemporaries than for herdmates.

The contemporary and herdmate comparisons developed and placed in op-
eration had more differences than simply the cohorts to which the bull’s daughters
were compared, likely because the procedures were developed in different countries
by independent groups. There were features that were advantageous to the differ-
ent procedures, and if there had been more collaboration during the development
there might have been modifications to produce a better procedure than any actu-
ally used. Some of the early methods that have been referred to as contemporary
or herdmate comparisons will be described in this chapter and their advantages
and disadvantages discussed. The main weakness of the daughter-dam compar-
ison was that only a small fraction of the apparent superiority of high yielding
cows reappears in their daughters. The variation in both dams’ and daughters’
yields caused considerable distortion in the information because the method was
based on the difference in yields between dams and daughters which made the
procedure rather ineffective. This was true even if one only compares dam and
daughter yields in the same herd-year. Nevertheless, Miller and Corley (1965)
showed this distortion was not due to the sires’ mates (dams of daughters). They
noted that the ranking of bulls was the same whether one chose to adjust or not
for mates (correlations of 0.998). Nevertheless, even with the availability of these
new procedures, it was usually a decade (or more) before much real progress was
observed in the countries which adopted evaluations using these two methods.
This was mostly due to a gradual phase-in to the new systems due to limitations
at the AI centers (availability of facilities, etc) and the failure to sample enough
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young bulls so that stringent selection could be carried out after the progeny tests
were completed.

Without question, the comparisons, in their various versions, were welcome
developments for genetic progress because they were more effective in reducing
environmental effects from herd, year, and, to a lesser extent (depending on how
modeled), season. They provided an opportunity for dairy producers to improve
their herds genetically by searching for truly superior sires.

4.2 New Zealand

A wide-scale use of the comparison of daughters to the herd average was
started in New Zealand in 1950 (Sire Survey and Merit Stud Register, 1955;
Searle, 1964) to rank bulls on butterfat yield. When applying these comparisons,
the primary goal was to neutralize the herd influence that is reflected in the
Daughter Average (DA). The second purpose was to regress for the number of
daughters because it was long known that when daughter numbers are limited,
sire evaluations will have more variation than their true values. The New Zealand
genetic evaluations were calculated by the Herd Improvement Department of the
New Zealand Dairy Production and Marketing Board. Lactation records were
excluded in the calculation of DA if age at calving exceeded 9 years, although
they were still included and used in the herd averages. Those with < 100 days
in milk and those between 100 and 200 days in milk which were ruled abnormal
were excluded as well. No adjustment was made for lactation length if the record
was < 305 days.

Age at calving was recorded only to the nearest year of age (e.g., 2 years,
3 years, etc.), so standardization of fat yield for age was done by adjusting 2-
and 3- year old age groups to the mature cow production level, i.e., to those cows
aged 4 to 9 years. Cows over 10 years also were factored. Thus, there were only
4 factors per breed. The additive factors tended to underestimate future yield in
high producing herds and overestimate it in low producing herds. Therefore, after
the 1956-57 calving season, the standardization was changed to use multiplicative
factors. Because most cows in New Zealand calved in the spring, season was not
considered an environmental source of concern and was ignored.

Sire proofs were done annually for pedigreed bulls and were called Prepar-
atory when they had 6 to 9 daughters and were Official once they obtained 10 or
more daughters. Each bull had their evaluations recalculated for 2 more years,
and even longer if they still lacked 20 daughters. Evaluations were calculated for
grade bulls (non-purebred) if requested by the owner, but these were not pub-
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lished. In New Zealand it was assumed that some of the differences between herd
averages were due to genetics so the bull was given credit for a portion of the
difference between the herd and Breed Average (BA).

This was done by deriving Estimated True Daughter Level (ETDL) with
an adjustment for the difference between Contemporary Average (CA) from breed
average (BA):

ETDL = DA - 0.9 (CA - BA)

Simply stated, this gave a bull a credit of one extra pound for each 10
pounds of butterfat that the contemporaries produced above the BA, and penal-
ized him the same if they were inferior to BA.

Each bull’s daughter fat averages were combined across years by weighting
by the number of records in each. They recognized that this caused an upward
bias in the DA because it ignored that the later lactations of the bull’s daughters
were enhanced by culling the poor producers in their first lactations.

The explanatory material indicated that when a bull had a high positive
difference from expected on his first crop of daughters, it was often because those
daughters represented an above-average sample of all his possible daughters, i.e.,
this initial survey more often than not was an over-estimate of the true value of
this bull for butterfat production.

Therefore, a final adjustment modified the ETDL to account for the num-
ber of daughters and lactations upon which the ETDL was based. Failing to
adjust for this would have resulted in users selecting bulls too often that were
overrated simply because they had been the recipient of favorable chance. By
incorporating the adjustment for number of daughters, bulls take on the property
(in theory) that their estimates have an equal probability of being above or be-
low their true values. Bulls evaluated appropriately should continue having this
property even as their sampling variance decreases with larger progeny numbers
(i.e., as these estimates become closer to their true values).

The ETDL was multiplied by the calculated weighting factor. The New
Zealand’s bull ratings represented transmitting ability instead of breeding value,
thus the rating was an estimate of the expected butterfat deviation of future
daughters. The weighting factor used for New Zealand was n/(n + 15) which
corresponded to a heritabililty (h2) of 0.25. This was based on assumptions that
evaluations were derived from one year’s data and that each daughter was in a
different herd. The procedure lacked several refinements that were evident in later
methods.
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4.3 Great Britain

One of the more publicized contemporary comparisons was outlined by
researchers in Great Britain, first presented by McArthur (1954) and further ex-
plained by Robertson and Rendel (1954). The British defined a contemporary
lactation as one that ended in the same recording year in the same herd. The
procedure had several differences from the early evaluations from New Zealand.
Great Britain used only first parity records and applied no adjustment for age or
month of calving so these effects remained unaccounted sources of variation. The
restriction of first parity records limited the number of lactations entering the
evaluation, but avoided the issue of bias in yield due to culling either daughter or
contemporaries based on their performance.

The sire proofs were calculated from 305-day lactation records; milk and fat
production after the 305th day was excluded in the lactation records. Eliminated
also were records from cows having non-normal lactations (e.g., cow was both
suckled and milked, or had lost a mammary quarter by accident) and those from
cows sold during lactation. Any lactation record of less than 200 days was rejected.
Exclusion of records is always a concern, particularly if there is some incentive to
change culling practices because it is known it can influence the bull evaluation
that will be published.

Within each herd-year, they specified 2 groups of animals, the daughters
of the bull being evaluated and the remaining heifers. At the time of initiation,
most of the heifers had originated from natural service. Robertson et al. (1956)
made a key point that having 5 daughters of a bull to compare to 1 contemporary
was no more accurate than having 1 daughter of a bull with 5 contemporaries.
This recognition was incorporated into the procedure they proposed.

The weight wj given to the Daughter Contemporary Difference (DCD) of
the lactation yields in each herd-recording year j was

wj = (nDj × nCj)/(nDj + nCj),

where nDj and nCj are the number of daughters and the number of contempor-
aries, respectively, in herd-year j. This method of weighting each comparison for
accuracy was one of the primary advantages of the British contemporary com-
parison over the methodology used in most (if not all) herdmate comparisons. A
sire’s mean DCD across all his daughter groups was derived as

Sire DCD =
∑

[wj × (DAj − CAj)]/
∑

(wj)

where
∑

indicates summation over j from 1 to number of herd-years and DAj
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and CAj are the mean yield of daughter and contemporaries in herd-year j. An
illustration of the calculation of sire’s DCD in 3 herd-years are in Table 4.1.

Table 4.1: Example illustration of calculations

Herd- No. No. Yield (1000 gallons) wj ×DCDj

year Dau. Cont. wj DAj CAj DCDj

1 3 8 2.1818 8.0 7.0 1.0 2181.8
2 2 12 1.7143 10.0 9.0 1.0 1714.3
3 5 10 3.3333 9.0 10.0 -1.0 -3333.3

10 7.2294 562.8

The sire’s mean DCD across all herd-years is 562.8/7.2294 = 77.8 gallons
and was referred to as the Contemporary Comparison. Also,

∑
wj was referred to

as the total weight orW which is 7.2294. To derive the bull’s estimate of breeding
value, one then needed to regress the sire’s DCD for the amount of information
upon which it was based. The regression suggested by McArthur (1954) was based
on a h2 = 0.30 so was 2W/(W + 12.33) or in this case, 0.739. Transferring it into
a formula for Estimated Breeding Value (EBV), it is:

EBV = 2W/(W + 12.33)× DCD = 57.5 gallons = (0.739× 77.8).

Robertson and Rendel (1954) reported this regression factor should use h2 = 0.17.

The Estimated Sire Merit (ESM) was expressed on an actual yield basis
(in contrast to a deviation), so was:

ESM = BA + EBV,

which equals 1057.5 if BA was 1,000 gallons. The sire ratings published by the
Milk Marketing Board (O’Connor, 1962) were taken a step further and expressed
as Relative Breeding Value (RBV), i.e., as a percentage of the BA.

RBV = 100 × (ESM / BA)

which equals 105.8%. Robertson et al. (1956) suggested that a W of at least 15
to 20 was necessary to get reasonable accuracy for an evaluation.

Age adjustment factors to correct records prior to their use in any evalu-
ation procedure will never fit all herds perfectly. However, any problem resulting
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from imperfect age adjustment should always be less when daughters are com-
pared to cohorts in the same parity, due to more uniformity in ages within the
comparison group. In Great Britain, there was no age adjustments applied to
the records for sire evaluation because only first lactations were used. When one
considers the expected difference in milk or fat yield between cows first calving
at 24 versus 34 months (typically 10%), there could have been a few large biases
in their evaluations simply caused by age differences.

Robertson et al. (1956) gave the rationale for developing their original
method in a British Society of Animal Production article. The primary objective
was to examine and judge the effectiveness of 3 sire evaluation methods which
seemed to have the best prospects for success at the time. These were the simple
average yield of daughters, the comparison of daughters with their dams, and the
comparison of daughters with their contemporaries in the same herd-years. They
were interested in identifying the bulls transmitting the highest milk production.
There seemed to be as much interest in the accuracy of natural-service sampled
bulls as the AI bulls, since this was the first step for acquiring proven bulls at
the time. More information was thought to be needed on natural service bulls to
determine the value of information from the originating herd versus that coming
from the daughters sold to other herds.

In the British evaluations, the assumption was made that all differences
between herds at different levels of production were due to differences in manage-
ment rather than to differences in breeding values. To support this assumption,
Robertson et al. (1956) selected the daughter records of an AI bull and divided
them into 4 groups according to the average production of the herds where they
milked. Their results are shown in Table 4.2.

Table 4.2: First lactation daughters of an AI bull distributed according to herd
production

Herd No. of Daughter Contemp.
Ave. daus. Average Average Difference
< 800 38 814 668 +146

800− 900 53 934 793 +141
900− 1000 25 1,012 898 +114
> 1000 58 1,190 1,028 +162

There was a considerable difference in performance of both daughters and
contemporaries, but the difference between the two was reasonably constant. The
authors indicated they had considerable evidence this bull was typical of the
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relationship generally observed. If the differences were approximately the same
at all herd levels, then herd differences were mainly due to management. They
indicated “this was not to say that genetic differences between herds do not exist,
but that they are not large enough to interfere seriously with their method”. This
may have been true at that point in time.

Robertson et al. (1956) compared evaluations based on both DA and con-
temporary comparison, and noted that the contemporary comparison had much
less variation between bulls than did DA due to removal of differences in manage-
ment levels provided to the daughters. They concluded that their contemporary
comparison had lived up to its early promise as a valuable method of evaluating
sires for milk traits; simply using DA would be inaccurate, and would result in
many good bulls failing to be considered as outstanding. They mentioned that
since only first lactations were included, additional studies were needed to de-
termine whether evaluation reports were missing bulls whose daughters matured
slowly, and whether bulls which had most of their daughters in only one herd
had distorted evaluations because they competed against only a small number of
other bulls.

4.4 Cornell University

In 1954, Henderson, Carter, and Godfrey prepared an abstract for the pro-
ceedings of the American Society of Animal Science titled “Use of the Contempor-
ary Herd Average in Appraising Progeny Tests of Dairy Bulls”. They indicated
that herds explained half of the variance in milk yield, and this appeared to be
distorting evaluations for AI bulls with small numbers of progeny. They also pro-
posed that a correction for the herd in which the bull’s daughters appeared would
reduce sampling error and bias. They supported incorporating an adjustment
to the difference between daughter yield and herd average (same as done in New
Zealand) for the quantity that the herd mean exceeded the population mean. This
adjustment was derived from the intra-sire regression of daughter yield on con-
temporary herd mean (excluding the daughter in question). More details of the
Cornell University evaluation system was provided by Henderson (1956), but a
more comprehensive description of the procedure was given by Searle (1964) in his
review comparing the sire evaluation systems used in New Zealand, Great Britain,
and New York state. Research supporting genetic evaluation procedures advanced
rapidly at Cornell University because of a number of favorable circumstances.

1. Dairy Herd Improvement (DHI) records were processed at Cornell Univer-
sity,
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2. The New York State Artificial Breeders’ Cooperative was located at the
University, and

3. A capable research and extension staff in the College of Agriculture was
dedicated to the cause.

The Cooperative provided financial support to the University and in ex-
change they received genetic evaluations on their bulls 3 times annually. This
contributed to a general atmosphere at Cornell dedicated to determining how
evaluations should be done effectively, perhaps more than any previous sustained
efforts to date. Numerous research studies were carried out at Cornell University
to support these commitments.

Most records from New York and 5 New England states were included in
the Cornell evaluations; however, cows with lactations starting prior to 23 months
and after 14 years of age were excluded. Also excluded were records initiated by an
abortion, or those with less than 100 pounds of milk fat. Prior to the evaluation,
records were pre-adjusted for lactation length, frequency of milking, and age at
calving. Short records of less than 305 days were provided additional credit as
long as the cessation of milking was not due to normal drying-off. For lactations
longer than 305 days, the records were truncated at 305 days. Records made
from milking more than twice-a-day were factored back to a twice-a-day basis
using constants that differed by parity and lactation length.

Lactation records were standardized for age with multiplicative factors for
the individual month up to 5 years and for individual years thereafter. Eight-
year-old cows were considered mature in Brown Swiss and Guernsey and 6- and
7-year-olds in the other breeds. Accounting for age in months surely provided
more accuracy than the approach used in New Zealand where one factor was used
for each age in years or in Great Britain which had no age adjustment.

The Cornell sire evaluations used all lactations on a cow, and combined
the lactations in an appropriate way. First the weighted mean across individual
DA was calculated. The use of multiple records factored in the repeatability (r)
of individual records and the number of lactations for each DA. The accuracy
of the evaluation was determined by the sum of the weighted records instead of
simply by the number of daughters. The weight given to daughter i was:

wi = nir/[1 + (ni − 1)r].

If daughter i had 4 records and the repeatability was 0.5, then

wi = (4× 0.5)/[1 + (4− 1)0.5] = 0.80
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compared to a wi of 0.50 from those daughters with a single record. Thus the con-
tribution from a daughter with 4 records was equivalent to having 1.6 daughters
(0.8/0.5), each with 1 record. The weights for 2 through 7 records per daughter
compared to just one record were 1.33, 1.50, 1.60, 1.67, 1.71, and 1.75, respect-
ively. The herdmate average for each sire was derived using the identical weights
that combine the information across the daughter yields. The differences derived
from using multiple records per cow in this manner are not biased by the effects
of culling as long as all the cows’ earlier records are present and age adjustments
are appropriate.

The Cornell system made additional adjustments to the daughter and herd-
mate average yields that were not included in the methods from New Zealand or
Great Britain. Each lactation record was designated as belonging to 1 of 3 seasons
in each year depending on the month of calving. Having 3 seasons per year should
have been effective in helping to eliminate most of the seasonal differences related
to each herd, but sub-setting always reduces the number of cohorts to which each
daughter is compared. These tradeoffs need to be evaluated for each situation.
Herd-Year-Season (HYS) averages were calculated within each breed, as well as
Year-Season (YS) averages from all records with the intention of estimating the
True Production (T) of HYS.

This is an estimate of the conditional mean of T-of-HYS, assuming T-of-
HYS and HYS Average are each from a bivariate normal distribution with a mean
of YS.

T-of-HYS = YS Avg. + [(n/(n+ 1))× (HYS Avg. - YS Avg.)].

This adjustment to HYS was effective in improving the cohorts’ inform-
ation thereby producing an improvement in each daughter-herdmate difference.
However, because it was then assumed that each of these differences were of equal
value, it failed to deliver the overall accuracy across the entire group of daugh-
ters that would have been achieved by individually weighting by the combination
“number of daughters and contemporaries” as was done in the British method.
For example, in the British method, if a daughter had one contemporary, it re-
ceived about half the weight of a daughter having 20. In the Cornell herdmate
comparison, both received near equal weight in producing the evaluation.

The Cornell procedure did not make the assumption that the British
method did, that all differences between herd averages were due to management,
but gave genetics credit for a portion of the difference. This adjustment to optim-
ize was estimated to be 0.9 as it was in New Zealand’s procedure. Applying this,
a Herdmate Adjusted Daughter Average (HADA) was derived and used instead
of the weighted DA by:
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HADA = Weighted DA - 0.9 (Herdmate Avg. - BA).

This gave bulls extra credit when their daughters had herdmates with higher milk
yield than BA, and penalized those when the herdmate yield was lower than BA.
The BA was derived by summing all production records for each breed in the
most recent 3-year period.

One advantage of the Cornell method over the British method was that
there were more daughter records used on bulls plus more records used on cohort
animals in the same herds. Assuming that standardization for age was done well,
this should have increased the accuracy above any alternatives that used only
first records. Cornell acknowledged that criticism was frequently directed toward
sire selection based on progeny tests because so much emphasis is given to first
lactation records which automatically places emphasis on early maturity. They
countered by stating that their work (Hickman and Henderson, 1955) indicated
that the daughters of different AI sires varied little with respect to increase from
first to second lactation.

The regression for converting daughter-herdmate difference to the bulls
transmitting ability was done by using the weight nD/(nD + 12), where nD is the
effective daughters factoring in the additional information from multiple lacta-
tions per daughter. It assumes h2 = .31. The Cornell herdmate comparison was
produced regularly until 1972 at which time it was replaced by the Northeast AI
Sire Comparison (Everett and Henderson, 1972).

4.5 USDA’s Herdmate Comparison (1961)

A herdmate comparison was implemented in 1961 on a national basis in
the United States for evaluating milk and fat yields (DHIA Proved Sire List,
1962) and was in many ways patterned after the procedures that were developed
at Cornell University. However, the USDA procedure partitioned the daughters
into 2 groups, those born as a result of matings through natural service and
those resulting from AI service. Evaluations for the two groups were calculated
independently. An initial evaluation was calculated for any bull that had 5 or
more milking daughters, then a bull was re-summarized if the number of daughters
increased by ≥ 50%.

Prior to entering milk records into the evaluation procedure, all lactations
terminated by culling for low production or due to dairy sales were extended to
305 days with projection factors (Kendrick, 1953). Other lactations were credited
as recorded if < 305 days, or truncated at 305 days if the cow milked longer. In
addition, all lactations were standardized for age (to a mature basis) and factored
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down if milked more than twice daily (Kendrick, 1953). Factors for reducing 305-
d, age-corrected records to a twice-a-day milking basis were separate for number
of days milked, milking frequency, and 3 age groupings and factors ranged from
0.74 to 0.99.

Having reliable evaluations on all AI bulls was a big step forward because
getting accurate information for the first time on bulls already in service around
the country, i.e., realizing who the outliers were, provided an opportunity for pro-
ducers to try to acquire semen to enhance their genetics. For the first time, all
national evaluations were derived by comparing the bulls’ daughters with other
cows experiencing the same management and feeding conditions, i.e., the daugh-
ters and their herdmates had an equal opportunity to produce. Because there
were rather small genetic differences between herds at the time, the difference of
the production of a sire’s daughters and their herdmates did not differ markedly
from one production level to another.

The USDA version of the herdmate comparison reflected a considerable
effort to provide an optimum group of cohorts to which the bull’s daughters were
compared. The herd-year-seasons were based upon a 5-month moving average.
The herdmate average was obtained by averaging all records of the daughters of
other sires of the same breed, calving in the same herd, in the same month, and
the preceding and subsequent 2 months. For example, if a cow calved in March,
her herdmates calved in that same herd from January through May.

The Herd Average (HA) of each lactation of a daughter was adjusted using
the number of herdmates (nH) and the season averages. This estimated the true
herdmate average as did the Cornell method although presented in a different
way.

Adjusted HA = Season Avg. + [nH/(nH + 1)]× (HA - Season Avg.)

The season averages were calculated from the nationwide 305 day, 2X milking, age
adjusted lactation yield (mature equivalent) of all DHI cows for the designated
breed.

The DA was adjusted to consider the small genetic difference impacting
herd averages, i.e., higher producing herds tend to have cows of a slightly higher
genetic level. This increased the evaluation of sires used in high producing herds
and decreased the evaluation of those used in low producing herds.

Adjusted DA = DA - 0.9 (Adjusted HA - BA)

where the BA used for each evaluation was computed from all DHIA cows of
the breed calving in the latest 4 years. Eight breeds were evaluated, Ayrshire,
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Brown Swiss, Guernseys, Holsteins, Jerseys, Milking Shorthorn, Red Dane and
Red Poll. The procedure used multiple lactations and these were combined using
the number of lactations and repeatability of the individual records. These later
adjustments, including the incorporation of breed-season averages and BA, were
incorporated into the herdmate comparison procedures, following the methodo-
logy used by C.R. Henderson and co-workers at Cornell University. To obtain the
estimate of the sire’s true transmitting ability from daughters scattered across
all different levels of herd management, an additional calculation was required
to regress for the amount of information (number of daughters and lactations).
Its calculation was necessary in order to compare bulls having widely differing
amounts of information. This regressed the Adjusted DA toward the BA with the
formula:

Predicted Avg. = BA + [nD/(nD + 12)]× (Adj. DA - BA)

where nD is the effective daughters factoring in information from multiple lacta-
tions per daughter. The constant 12 was the same as used at Cornell at the
time, assuming h2 = 0.31. In hindsight, the heritability seems high, but it was
certainly superior to not using a regression. In the August 1965 evaluations, the
regression was changed to [nD/(nD + 20)] (for h2 = 0.19) and stated that recent
research showed this revision more accurately reflects the true accuracy of AI sires
as determined by the group regression of future daughters on earlier daughters.
Producers observing the productivity of their own cows usually expected to see
a higher relationship in their herd between the milking daughters of individual
bulls and future daughters by the same bulls than what actually occurs.

The explanatory material (DHIA Proved Sire List, 1962) of the sire eval-
uation procedure indicated the greater the number of comparisons, the more reli-
able the information. “If a bull had < 9 natural service daughters or < 24 artificial
insemination daughters, his published information should be considered prelimin-
ary and serve only as indicative and not conclusive evidence of the breeding value
of the bull.” If the natural service evaluation had from 17 to 25 unselected com-
parisons or the AI evaluation had 50 to 60 unselected comparisons, additional
information would not greatly increase the accuracy of the evaluation. Today,
this later suggestion was an overstatement; however, at the time, obtaining large
numbers of daughters on each bull was a challenge.

4.6 USDA’s Herdmate Comparison (1968)

Several revisions were made to USDA’s national sire evaluation procedure
in May 1968 (DHIA Proved Sire List, 1968, Plowman and McDaniel, 1968) follow-
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ing discussions with industry groups. These changes helped unify the evaluation
effort. As a consequence, all dairy cattle breed associations discontinued calcu-
lating their own evaluations which they had been doing using a fraction of the
cows on DHIA test. Prior to that time, several sire evaluation lists were available
to breeders, and multiple lists were a source of confusion for some producers in
choosing sires. In 1968 obtaining a sire evaluation became easier. Evaluations
were produced if a bull:

1. had ≥ 10 daughters with herdmates for the first time;

2. had semen marketed actively through an AI organization;

3. had enough additional information so that the evaluation might change
appreciably; or

4. was the recipient of a special request for a new summary.

Continuing the practice used before, all production records entering the
sire evaluation were pre-adjusted for a number of effects. These were primarily
the same as before, i.e., extend records to 305 days if terminated by abortion
or by sales from the herd (McDaniel et al., 1965), adjusting for age at calving
to a mature basis (McDaniel et al., 1967), and factoring all cow lactations to
twice-daily milking (Kendrick, 1953). However, changes were made to make these
adjustments more precise; i.e., records were extended to 305 days with factors
developed separately for individual breeds, parities, and traits (milk and fat),
and standardization to 305 days differed for regions and seasons, as well as for
each trait (Dairy Herd Improvement Letter, 1967).

Records were not used if they were coded as complete but < 180 days in
milk, coded as incomplete but < 15 days in length, coded as initiated by abortion,
or those missing ≥ 2 consecutive test periods. Lactation records were used when
the lapse-time from calving date to start of the run ≥ 365 days. This avoided
inclusion of an abnormally high incidence of incomplete records in early summaries
that would otherwise bias the bull performance negatively; i.e., including all the
culled daughter records in a bull’s evaluation before the other daughters with
more traditional length (≥ 305-day) had the opportunity to be included.

Continuing in a similar approach as in the earlier version, albeit with more
refinements by using regional information, the HA was adjusted for the number
of herdmates by the following:

Adjusted HA = Regional YS Avg + [nH/(nH + 1)]× (HA - Reg YS Avg)
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where nH is the number of herdmates. The designation of herdmate remained
the same as in earlier USDA versions, i.e., a rolling 5-month herd-year-season of
those by other sires in the same breed. The regional breed-year-season averages
were for each 5-month rolling year-season from records with the same adjustments
prior to entry into the evaluation described before. Three regional groups were
defined for Ayrshires and Brown Swiss, 4 for Guernseys and Jerseys, and 14 for
Holsteins.

The revised 1968 version of the USDA-DHIA herdmate comparison em-
bedded an Adjusted DA as a subset of the formula as:

Adj. DA = DA - Adj. HA + 0.1 (Adj. HA - BA)

where the BA production was compiled from all DHIA cows of the breed calving in
the same rolling 5-month year-season. The 1968 formula appears slightly different
than in the 1961 version because in 1968 the evaluations were presented as a
deviation instead of on an average milk and fat yield basis, i.e., with the BA
included. Again, the purpose was to consider genetic difference in herd averages
as higher producing herds tended to have cows of a slightly higher genetic level.

The final adjustment for the Herdmate Comparison (1968 version) was
to regress the Adj. DA for the number of effective daughters. The new genetic
indication of breeding merit was referred to as Predicted Difference (PD) instead
of the earlier term Predicted Average, because the decision was made to present
predictions of transmitting ability as deviations from a base zero. Predicted Dif-
ference was defined as the expected deviation for milk and fat yield of a bull’s
daughters from their herdmates in breed average herds. The formula was:

PD = (nDh
2)/[4 + (nD − 1)h2 + 4

∑
ni(ni − 1)c2/nD]× Adj. DA

where: ni is the number of daughters in the ith herd and
∑
ni is the summation

across all herds which equals nD. The c2 is the residual environmental correlation
among half-sibs calving in the same herd due to common environment and/or
genetic factors not accounted for by differences among bulls. The regression in
the 1968 version included an additional adjustment to consider the distribution
of daughters across herds. For purpose of comparing it with the 1961 version, if
we temporarily ignore 4

∑
ni(ni−1)c2/nD, then (nDh

2)/[4+(nD−1)h2] reduces
to nD/(nD + 20) when h2 = 0.19. The added adjustment to account for the
distribution of daughters across herds was included because if a bull’s daughters
were in a single or few herds, the evaluation was not as accurate as having the
same total number of daughters distributed across many herds. The c2 adjustment
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was quite severe in that it was set at 0.14, but it was effective for keeping bulls
with daughters in only a few herds from having PD that were far more divergent
than their true values. This formulation was from the research of Lush (1933)
and Bereskin (1953), although re-estimated using national data. Lush showed
that the upper limit of the correlation of estimated and actual breeding value
were a function of the environmental correlation among half sisters in the same
herd. He pointed out that if the value is 0.14, the maximum repeatability of a
single-herd proof was near 0.25.

The consequence of this adjustment for distribution of daughters across
herds upon bull Repeatability (and therefore likewise on PD) is illustrated in
Figure 4.1. If a bull has 100 daughters in a single herd, his Repeatability was
26%. If an average herd has 12 cows, then if those 100 daughters were distributed
1, 2, 5, or 10 daughters per herd, the Repeatability was 82, 81, 74, and 45%,
respectively.

Figure 4.1
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Without this adjustment, bulls tested in a few herds (as the majority of
bulls had been up to that time) would have had PD with more variation than
that represented in their true transmitting ability. The concern was that the true
merit of bulls with daughters in few herds having PD with large positive values
would have been substantially lower than predicted by their published PD.
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The new version contained many improvements beyond those shown in
the basic formula. For example,

∑
wj was substituted for nD to provide effective

daughters when some daughters had more than one record, i.e.,

wj = nj/[1 + (nj − 1)r]

where: nj was equal to the number of records on the jth cow and r is the repeat-
ability of individual records and was assumed to be 0.50. The accuracy of the
bull evaluations was termed the Repeatability (R) of the PD and was simply the
regression

(nDh
2)/[4 + (nD − 1)h2 + 4

∑
ni(ni − 1)c2/nD],

that portion multiplied by the Adj. DA in the PD formula, times 100. When
a bull’s R was low, the true breeding value of the bull was often substantially
different from his PD. In contrast, as a bull’s R approached 100%, his true breeding
value represented quite accurately the PD. Another improvement of the 1968
version was weighting of the lactation records for their number of days in milk.
Obviously the accuracy of the records is related to the length of lactation. The
correlations in Table 4.3 were used as the weightings and these varied by the
number of monthly tests included in each record and by parity.

Table 4.3: Phenotypic correlations between lactation records with various number
of monthly tests and from the complete 305 day lactation

Parity Number of monthly tests
1 2 3 4 5 6 7 8 9 10

1 .72 .83 .88 .92 .94 .96 .97 .98 .99 1.00
> 2 .60 .74 .82 .86 .91 .93 .96 .98 .99 1.00

The formula for this adjustment was:

Adj. Daughter Record = Adj. HA + ρi (Projected DA - Adj. HA)

where ρi was the phenotypic correlation between records with imonths in milk and
the 305 day records. For example, projected records of 2-yr old cows with 15 to 46
days in milk (1 monthly test) that were sold for dairy purposes or low production
received 72% of the emphasis of others having complete 305-day records.

The herdmate comparison helped educate US dairy producers on a number
of principles that continue to be beneficial to them in making genetic improve-
ment to the present. Breeders learned that the predicted transmitting ability
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(e.g., Predicted Average and PD) was the key to obtaining genetic improvement.
They learned that Repeatability of the evaluation (R) should be only a second-
ary criterion, used primarily to determine the number of inseminations to obtain
from AI sires, once they have been chosen based on their predicted transmitting
abilities. This is because the Repeatability only indicates how sure we are that
the PD really reflects his true transmitting ability.

Situations that resulted in inaccuracies with the use of the contemporary or
herdmate comparisons (or any evaluation) was if daughters were fed or managed
differently than the other cows in the herd. Obviously, this arises as a problem
primarily when daughters are given better feed and care than most others in the
herd, under the deliberate intent to make the bull look better than he would
otherwise appear. This is primarily an issue when the majority of daughters are
under the influence of management in only a few herds, such as natural service or
syndicated bulls. Caution was also warranted if the cohorts were sired by other
bulls that deviated substantially from what typically occurred in the population
or if they were from only one or a few bulls.
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Chapter 5

USDA Modified Contemporary
Comparisons

H. DUANE NORMAN
REX L. POWELL

5.1 Introduction

In 1974, USDA introduced a national sire and cow evaluation procedure
for the United States incorporating several changes to address the shortcomings
of its predecessor. The new procedure was tagged the Modified Contemporary
Comparison (MCC) and replaced the USDA Herdmate Comparison which had
been used for the US national evaluation in various versions since 1961. MCC
evaluations remained in use in the United States for 15 years to estimate genetic
merit of bulls and cows for yield of milk and fat and at a later time, protein.
MCC had 3 primary advantages over most other evaluations in place at the time
of implementation,

1. an adjustment for genetic merit of the contemporaries,

2. a highly effective method of weighting the information within across herds,
and

3. the incorporation of genetic merit of ancestors.

In addition, it allowed the continued inclusion of all lactation records at a
time when most other countries switched to using only first lactation records and
continued doing so for several years.

55
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Three concerns prior to converting to the MCC were

1. over evaluation of older bulls,

2. over evaluation of non-artificial insemination sampled bulls, and

3. misranking of bulls from different segments of the population (for example,
from AI organizations or region).

If the contemporaries of an individual bull’s daughter were sired by better than
average bulls, the superiority of contemporaries’ sires biased (in the opposite
direction) differences of the daughter from contemporary average. Elimination of
this bias by returning credit for the merit of the contemporaries sires delivered
equitable.

The MCC model equation included nearly all the effects that were incor-
porated in 1989 into its successor, the USDA Animal Model, as well as more effects
than modeled in most other evaluations even used today, the primary exception
being the inclusion of genomic information. Evaluations produced by the MCC
were shown in subsequent years to be highly accurate, and supported accelerated
genetic progress.

MCC evaluations produced relationships between parent indexes and AI
sons’ performance that came close to being 100% as predictable as expected; in
most prior studies using other evaluation methods, only about one-half to two-
thirds the expected regressions were realized (Freeman, 1970; Van Vleck and
Carter, 1972; Vinson and Freeman, 1972). Regardless of these somewhat disap-
pointing regressions and correlations in previous studies, they were always pos-
itive, so inclusion of parent information could have been helpful, even though
responses might not have been as accurate as one hoped.

The MCC was the first method used that incorporated relatives other
than daughters into bull evaluations, which may have contributed to its improved
predictions across generations. Around the same time MCC was implemented,
many countries were converting their evaluation systems to use only first records
because of computational limitations as well as from concern surrounding culling
bias, but nearly all returned to using multiple records sometime later. When only
first lactation records were used, it made it difficult to evaluate economic merit
within herds, especially on cows. Using multiple records per cow placed more
emphasis on performance throughout the entire productive life of the animals
than did evaluations based only on first lactations.

Instead of each daughter’s lactation yields being compared with the yields
of herdmates of all ages as before, in MCC each was compared primarily with
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the yields of the sire-identified contemporaries in the same parity grouping as the
daughter (first lactation or later lactations). As in most evaluations, paternal half-
sisters were excluded when calculating the contemporary or herdmate averages.
Comparing daughters with contemporaries (where ages of animals compared are
similar) instead of herdmates helped minimize unwanted variation due to age as
age effects on yields in individual herds often differs from the age responses typical
for the population. The MCC had the benefit of pre-adjustments using updated
national factors for standardizing for age and month of calving which differed by
breeds and regions (Miller, 1973; Norman et al., 1974).

All sire-identified herdmates not in the daughter’s lactation group were
averaged and included as one additional contemporary, i.e., combined with the
contemporary average of the daughter’s parity group. A correction to account
for the average selection bias observed in lactation records due to culling across
parities based on the results of Keown et al. (1976) was incorporated into the
non-contemporaries averages. Combining the contemporaries yield plus a single
average herdmates’ yield from the other parity grouping enabled having a Modi-
fied Contemporary Average (MCA) for most lactations of nearly every daughter.
This allowed daughters to contribute to the evaluation when they had no contem-
poraries from the same parity grouping, but had one or more herdmates from the
other parity group; in these cases the comparison received approximately one-half
the weight [similar to (nDnC)/(nD +nC) of Robertson and Rendel (1954)], where
nD is the number of daughters and nC is the number of contemporaries, of other
comparisons that had dozens of contemporaries.

To be included as a contemporary or herdmate, a cow had to calve in the
5-month period around the daughter’s calving month (from 2 months before to 2
months after), same as in the previous evaluation method. A rolling herd-year-
season was used in MCC as monthly biases are typically smaller using rolling
rather than using fixed herd-year-seasons, because calving dates of daughters and
contemporaries are usually closer. Because herds are managed differently, all
seasonal effects will never be removed by any genetic evaluation procedure when
contemporaries span multiple months. As herd size increases, the consequence of
reducing the number of months in the seasonal grouping should be periodically
assessed.

5.2 Background Research for MCC

Henderson (1969) outlined some of the assumptions made in the herdmate
comparison to the delegates at the National Association of Animal Breeders an-
nual convention and stated “we need more research on whether there are really
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problems serious enough to warrant changes in a successful, widely accepted (sire)
program.” Within a year, a major research effort was undertaken at USDA to
answer many of the questions raised. McDaniel et al. (1973) made an attempt to
document the advantages and disadvantages of comparing the daughters to con-
temporaries versus herdmates to determine which would be preferable in ranking
sires in the US, based on data between 1966 and 1968. They characterized the
distributions of contemporaries and herdmates calving in the same rolling 5-mo
herd-year-season in 5 breeds. They found from 6 to 25% of progeny with first
lactations did not have contemporaries in the same lactation and therefore up to
25% of the bull’s daughters would not contribute to their sire’s evaluation if con-
temporaries were restricted to “true” contemporaries. Similar values for second
lactations were 10 to 29%. However, only 1 to 5% did not have herdmates of any
age. For those with herdmates, the mean number of contemporaries ranged from
3 to 15 but was 5 to 10 for most groups. Number of herdmates ranged from 12 to
37, but most groups averaged over 20. Mean numbers for second lactation were
slightly lower.

Biases from culling were also examined. Biases in milk yield against AI
sired first lactations caused by comparing them to selected older cows were small
in Ayrshires, Guernseys, and Holsteins (+7 to -10 kg) but were larger for Jerseys
and Brown Swiss (-86 and -115 kg). Biases against non-AI sired first lactation
cows were of similar magnitudes. Larger biases resulted when first lactations
were compared to both their first and second lactation herdmates. They also
showed sire summaries based on daughters’ first lactations versus herdmates first
lactations had a larger sampling variance (about 5 to 40%); these would not have
been subject to bias as they were recorded prior to culling. Sampling variances
were lower when first lactations were compared to herdmates of all ages, but biases
resulting from older cows being the survivors of culling for yield were present. This
study showed a contemporary comparison could be designed to use all cows with
at least one herdmate of any age and the “average bias” observed from culling
could be removed. If all the sires and dams of contemporaries associated with
each daughter in a sire evaluation were a random sample of one single genetic
population for each breed, complex sire evaluation techniques would not have
been so important, although still would have been helpful because of reducing
differences due to random variation. In such case, each cow could have been
compared only with her contemporary average, and the common effects of herd
environment (feeding and management) and genetics of contemporaries would
have been relatively small, and each daughter’s deviation would represent the
genetics of her sire without bias.

The assumption of little genetic differences among contemporary averages
was made for contemporary and herdmate comparisons. Although this assump-
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tion was not completely true for either, its shortcomings did not prohibit an ac-
celeration of genetic improvement. However, as the rate of genetic improvement
gradually increased, more biases in the procedures resulted from discrepancies in
genetic merit of contemporaries or herdmates with which a bull’s daughters were
compared (Miller and Corley, 1965; McDaniel et al., 1974).

No contemporary or herdmate comparsions previously accounted for the
genetic merit of the herdmates’ sires directly, but instead either assumed no dif-
ferences or that a beneficial adjustment was made because of a correlation with
herd yield. The effects that the actual genetic merit of the herdmates’ sires had on
daughter deviation from herdmate average and consequently upon sire summar-
ies were examined by Norman et al. (1972) on a comprehensive basis throughout
the United States. Lactation records from herds between 1966 and 1968 from 5
breeds on official Dairy Herd Improvement testing were used. Regressions within
sire and year of calving of a) daughter yield, b) various herdmate averages, and
c) daughter deviations from the various herdmate averages on average PD of the
herdmates’ sires were calculated.

As average PD for herdmates’ sires in Artificial Insemination (AI) in-
creased, so did first lactation daughters’ yield (b = 0.35 to 0.73) and AI herdmate
average (b = 1.34 to 1.78), but the daughters’ deviation from AI herdmate average
decreased (b = -0.72 to -1.14). Standard errors showed that these latter regres-
sions did not differ from -1.00 in any of the 5 breeds, a highly desirable property
if one considered using this as a means of adjusting for genetic merit of cohorts.
Regression using AI contemporaries in both first and second lactation gave results
similar to those expected. The results confirmed that differences between bulls in
the genetic value of herdmates affected the herdmate comparison and therefore
likely caused some misranking of bulls. These regressions provided convincing
evidence that adjusting for the average genetic value of the herdmates’ sires could
significantly increase the accuracy of sire evaluations in use at the time.

In some contemporary or herdmate comparisons, the progeny of different
bulls were compared with contemporaries or herdmates using the regression of
herd mean (also contemporary or herdmate average) on daughter yield which
adjusted for genetic differences in a non-specific manner. To determine the extent
to which ignoring or adjusting based on herd level succeeded or failed to satisfy
this issue, it was necessary to determine where these shortcuts were creating
inequities and to document the extent of the problem. McDaniel et al. (1974)
derived the genetic merit of sires of herdmates of bulls’ progeny by geographical
region, by AI organization, by age of bulls, and by calendar year. Average PD
of herdmates’ sires in Holsteins varied by 134 kg between the highest and lowest
region and by 173 kg between the various AI organizations. Progeny of younger
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bulls were compared to herdmates with higher transmitting abilities than were
progeny of older bulls due to genetic improvements across years, but differences
within the same year were small. These discrepancies were causing systematic
errors in sire evaluations computed with the herdmate comparison procedures.
Nevertheless, these biases were small compared to the variation among bulls across
regions or AI organizations, but eliminating them was feasible by either modifying
the contemporary or herdmate comparisons, i.e., using alternative sire evaluation
procedures that adjust for genetic variation in herdmates.

5.3 The MCC Procedure

The MCC sire evaluation procedure used the following formula (Norman,
1976; Dickinson et al., 1976):

PD74 = R × MCD + (1 - R) × GA

where PD74 = Predicted Difference (PD), a measure of predicted transmitting
ability set to a 1974 base; R= Repeatability, an indication of the accuracy of the
progeny information, actually equivalent to “variation accounted for” in statist-
ical terms; MCD = Modified Contemporary Deviation = DA - MCA + PDsmc
(where DA is daughter average, MCA is modified contemporary average, and is
the average genetic merit of the sires of modified contemporaries); and GA =
group average MCD of bulls with similar pedigree indexes.

The statistical properties of the procedure were unknown. The same could
have been said about the contemporary or herdmate comparison. Nevertheless,
Quaas and Pollak (1981) reported that predicted transmitting ability would take
on best linear unbiased prediction properties after iteration of the “average eval-
uation of contemporaries’ sires”. Their approach was remarkably similar to the
major components of the MCC method except that in MCC, the sire of the daugh-
ter was included in GA. However, each genetic group in MCC usually represented
over 100 bulls which meant there was virtually no difference from including or
excluding them. Also, there was a very minor difference in the derivation of R.

In July 1983, GA was replaced with a prediction of GA called Ancestor
Merit (AM). AM was shown to give a slightly better indication of daughter per-
formance (Wiggans and Powell, 1984). The AM procedure was modified in July
1985 to include protein, to allow for genetic trend within the few bulls without
a Pedigree Index (PI), and to eliminate the assumption that the specific trend
estimated in the past would continue. The MCC was updated with a new genetic
base in 1984 (10 years after initiation) so that dairy producers would be reminded
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of the need to raise their selection standards when choosing service bulls. The
1984 base was set by making the weighted average PD of sires of first lactation
cows sum to zero for each trait and it has been updated every 5 years since,
continuing even after different evaluation methods were implemented.

In 1984, the MCC model was changed slightly to:

PD82 = R × (DA - MCA + PDsmc) + (1-R) × AM

where PD82 = PD under the 1982 genetic base and MCD = DA - MCA + PDsmc
.

For young bulls, PD82 was equivalent to AM because no daughter inform-
ation was available. As R in the MCC equation approached 1.0 (that is, 100%),
the contribution from the pedigree was diluted to the point where PD was nearly
the same as the MCD. The average R of contemporaries’ sires averaged about
85% for most bulls.

5.4 Innovations of MCC

The term “modified” in MCC actually could have referred to several in-
novations:

1. the inclusion of a single non-contemporary in the contemporary average,

2. adjustment of each daughter-contemporary difference by the genetics of the
contemporaries’ sires,

3. inclusion of genetic grouping based on pedigree merit, or

4. the new weighting for increased accuracy.

For the contemporary comparison, the herdmate comparison, and the MCC, the
genetic equality of dams of both daughters and contemporaries within herd-year
of calving is assumed, and no attempt was ever made to adjust for differences.
Norman et al. (1987) calculated the bias that assortative mating caused by doc-
umenting the effect of non-randomness of bulls’ mates on daughter milk yield.
First lactation records for 6 breeds were from cows with calving dates from 1967
to 1984. Correlations between sire PD and dam (mate) transmitting ability Cow
Index (CI) for individual years ranged from -0.08 to 0.20. More often than not,
the assortative mating was positive. However, the practice of assortative mating
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only causes misranking in these procedures if it occurs within herd-years. For-
tunately correlations across all records within herd-years indicated no assortative
mating for milk yield (0.00 to 0.02) for any breed except Ayrshire (-0.07). The
situation in Ayrshires was a result of a deliberate attempt to avoid inbreeding
between relatives of Selwood Betty’s Commander, an extremely high milk bull,
who was used extensively for over 15 years in the breed. Additional details about
his extensive use were given by Hudson and Van Vleck (1984). Within-sire re-
gressions of daughter milk yield deviated from contemporary average (which had
been adjusted for average PD of contemporaries’ sires) on dam Cow Index (merit
of mates) by breed were .84 to 1.08 for breed-regions. Expected regressions were
1.00.

Effect of merit of mates on MCC milk evaluations was determined by
comparing evaluations from standardized yield with those from standardized yield
minus dam’s Cow Index. Correlations between evaluations for 4233 Ayrshire, 5275
Brown Swiss, 13,742 Guernsey, 32,572 Holstein, and 13,688 Jersey each rounded
to 1.00; average absolute differences in evaluations were 9 to 16 kg, and maximum
differences were 49 to 118 kg. Adding a correction to the MCC to account for non-
randomness of mates would have done virtually nothing to increase the accuracy
except for about 15 of the 70,000 bulls examined who would have been improved
slightly. One bull was biased badly, but he was a progeny test bull who died
during his waiting period, and a release of the limited quantity of remaining
semen (second round) was only used on elite cows for purposes of obtaining sons
for AI service.

Including pedigree information was one of the most valuable improvements
in the MCC and yet was one of its most controversial aspects. Previous sire sum-
maries had disregarded ancestor information that could have been valuable in
predicting breeding value. The earlier practice was to value the pedigree informa-
tion when choosing the young animals, but then discard the pedigree information
as soon as the first daughters started milking, which seemed irrational. Ironically,
information from relatives had been included in cow evaluations for many years.
The inclusion of genetic grouping or ancestor merit in bull evaluation made use
of pedigree information similar to its use in selection index procedures.

The relative contribution from pedigree information varied inversely with
the amount of progeny information available. Pedigree information was weighted
with progeny information according to the value of each source. Most bulls had AI
sires and maternal grandsires with high R so the young bull’s pedigree information
was usually equivalent to the information from nine milking daughters, each in
a different herd. Initially, pedigree information aided in the choice of bulls to
progeny test, but also increased the accuracy of sire summaries, especially when
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the bull had low R. Norman et al. (1976) showed that pedigree information was
a valuable addition to the evaluations, even for bulls with moderate to high R.
Correlation of PD by MCC with future daughter information (those calving later)
was 0.13 higher than the herdmate comparison when a bull had ≤ 10 daughters,
but was 0.04 higher when they had ≥ 100 daughters. The genetic grouping of
the bulls accounted for 49 to 73% of the change from the herdmate comparison
to the MCC, while the genetic merit of the herdmate sires accounted for only 26
to 39%.

Powell et al. (1977) estimated the regression of bull’s daughter yields on
pedigree index based on the MCC procedure and these averaged near 1.0, with
corresponding correlations close to the expected value. Before MCC, ironically,
research showed pedigree information consistently was less effective than theory
indicated it should be (usually ranging from about one-half to two-thirds), prob-
ably because evaluations were calculated from procedures without a fixed base,
without multiple-population grouping, and usually with no accounting for genetic
merit of herdmates’ sires. The MCC sire evaluation was not the first method to
incorporate grouping, as these had been assigned by stud-year in the Northeast AI
Sire Comparison (Everett and Henderson, 1972), but MCC was the first method
to group directly on pedigree merit, which proved to be considerably more effect-
ive than the Cornell grouping. The evidence for this conclusion was determined
by examining the differences in group means; stated another way, if the estimated
group means are similar in magnitude, there is little gained from the grouping
strategy.

The daughter and contemporary information were weighted according to
days in milk, number of daughters and contemporaries, and number of and average
Repeatability of contemporaries’ sires. This weighting was more accurate than if
all records were assumed to be equal in length and to have an infinite number of
herdmates. Contemporaries with complete records received more weight in cal-
culating contemporary averages than did those with in-progress or short terminal
records (Wiggans and Dickinson, 1985). The statistical procedures for weighting
daughter and contemporary information in the calculation of MCC Sire Summary
calculations were quite extensive (Norman, 1976; Dickinson et al., 1976). Each
cow’s records (contemporaries as well as daughters) were weighted by the inverse
of their expected variances while forming linear functions of the information. Dif-
ferences between daughter and contemporary averages also were combined within
and across herds by the inverse of their respective variances. Finally, R of the
sire was calculated with the formula that accounts for the cumulative variation
(within and between herds).
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The MCC procedure combined daughter information by weighting for
daughter distribution across herds in the presence of residual environmental cor-
relations. This recognizes that a bull’s daughters in the same herd were more
alike than they were expected to be just from having a common sire. This tech-
nique limited the influence of daughter information from any single herd and thus
produced more reliable combined information from all herds. Repeatability in-
creased faster with new daughters in new herds than with additional daughters or
records in a herd that already had daughters. Thus, the influence of a single herd
having a high percentage of a bull’s daughters was markedly limited. MCC was
the first sire evaluation procedures in use with this feature incorporated. In most
countries, release of evaluations was delayed by requiring a bull to have daugh-
ters in a large number of herds. This delay in release of genetic information kept
the absence of this feature that accounted for residual environmental correlations
from causing problems, but slowed the wider use of a number of good bulls.

The previous USDA herdmate comparison procedure also restricted the
information coming from an individual herd, but in a less desirable way. It gave
equal weight to each daughter with the same number of records regardless of how
many daughters were in each herd, and then used the distribution to derive the
appropriate R and PD for that method. In that earlier procedure, the R was
correct for that average derived, but by adding daughters in a herd that already
had many, in certain situations the bull’s R actually decreased. In contrast, in
the MCC where the information was weighted for the residual environmental
correlation in deriving the MCD, adding daughters never resulted in a reduction
of R, but of course would not increase R much either if there already were a large
number of daughters in the herd adding new ones.

The weighting procedure, as well as the use of pedigree information were
two of the reasons that the MCC summaries for bulls with daughters in only a
few herds have greater accuracy than did such evaluations using earlier methods.
This accuracy was documented for the first 192 bulls that entered AI service
based on natural service daughters in a few herds after the MCC implementation
in 1974 (Norman et al., 1985). Estimated transmitting abilities before entering
AI were compared with those estimated after each bull had hundreds of daughters
in a large number of herds. Average PD milk decreased by 0.9 kg; average PD fat
remained the same. Any losses incurred by use of individual bulls with evaluations
that declined were compensated for by use of other bulls with evaluations that
increased. Results examined later (unpublished) showed that additional bulls
entering AI with limited herds did not hold up as well as the first 192, but the
restriction on R from the weighting forced dairy producers to sample these bulls
in many more herds, and eventually there were few that entered AI using this
sampling method.
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5.5 The Genetic Base

A stepwise genetic base is used in the MCC. A stepwise genetic base (that
is, a fixed base for a specified number of years) is a compromise between a fixed
and a moving base. Maintaining a fixed (or constant) base over a long period
minimizes any problems with comparing bulls over time. A fixed base permits the
appropriate adjustment for sires of contemporaries because all bulls are evaluated
to the same base within breed. Therefore, sire summaries produced at different
times with the same base are directly comparable regardless of the evaluation date.
When the base was changed in January 1984, all bulls and cows with summaries
that had been released were reevaluated. The weighted average PD of sires of first-
lactation cows calving in 1982 was defined as zero for the updated MCC genetic
base for each trait and breed. Having all estimates of genetic merit with the
same base increases the accuracy of PD’s, Cow Indexes and pedigree evaluations.
Comparability of these genetic tools increases genetic gain because bulls and cows
are selected on the basis of progeny performance as well as pedigree potential.
Unnecessary problems are encountered with a moving base when evaluations from
different runs are compared.

5.6 Calculation of Ancestor Merit

To compute AM, bulls were assigned to groups based on breed, birth year
and pedigree information available (sire and maternal grandsire (MGS), sire only
or none). Bulls with only MGS information were included with the group of bulls
with no pedigree information available.

Bulls without pedigree information were grouped by bull’s birth year. In
addition, Holstein bulls with sire information only (no MGS information) were
grouped separately. For other breeds, an MGS evaluation was estimated from
average Cow Indexes of dams of contemporaries, which were the adjustments
to Cow Indexes for genetic merit of contemporaries’ dams. This estimate was
combined with the known sire evaluation so that these bulls would be included
with those that had both sire and MGS pedigree information. Holstein and Jersey
bulls with both sire and MGS information (including Jersey bulls with estimated
MGS evaluations) were categorized further by the type of sampling program. The
sampling programs were natural service versus AI.

Bulls without pedigree information available were grouped by average year
of daughter birth for the bull’s first evaluation with ≥ 5 daughters. For bulls with
≤ 5 daughters, birth year from the bull’s latest evaluation was used. If the birth
date was known for a bull with no pedigree information, average birth year of
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daughters was constrained to be no more than 3 years after the bull’s birth year.
Difference between MCD and pedigree index was computed individually for all
bulls. Then means of differences weighted by R were computed for each breed,
yield trait (milk, fat or protein), birth year and pedigree category. These means
were smoothed by regression over 9 consecutive years with the estimate for the
middle year retained. Means for the most recent years were calculated from
regression coefficients from the last complete set of 9 years. After calculation of
means, AM was calculated by:

AM = mean + bull’s Pedigree Index.

5.7 Ranking Percentiles

Genetic progress occurred at an impressive rate (Council on Dairy Cattle
Breeding, 2013). Average PD for milk of active AI bulls increased by more than
45 kg per year. A weakness of evaluations from a fixed genetic base is that they
do not reflect how each bull compares with the current average bull; i.e., an
evaluation by itself does not indicate whether a specific bull is above or below
average for the current “bull battery”. For example, in the early 1970’s, bulls that
were +400 kg for PD milk were some of the best bulls available. However, before
the base changed in 1984, a bull with +400 kg for PD milk was a candidate for
culling.

Dollar percentiles based on economic pricing for milk, fat, and protein
(PD$) were added to USDA sire summaries to indicate how bulls compare with
active AI (marketed) bulls at any time. Percentiles provided information about
the ranking of each bull for PD$ relative to the PD$ of all active AI bulls of that
breed. Specifically, a bull’s percentile showed the percentage of all active Al bulls
that the bull exceeded for PD$. Information for active AI bulls for each breed
was sorted by PD$ from high to low. Bulls in the top 1% were in percentile 99;
this means that their PD$ was better than the PD$ of 99% of all active AI bulls.
Bulls in the bottom 1% were in percentile 0, their PD$ exceeded less than 1% of
all active AI bulls.

Competition within and across breeds was intense. Breeders were encour-
aged to not use bulls with percentiles lower than that of the average active AI
bulls, i.e., percentile 50. Dairy producers were encouraged to discontinue services
to bulls below percentile 50 and instead shift these services to young AI bulls
with high pedigree predictions. Research showed that the daughters of the young
bulls were more productive, but also when these were sampled more extensively,
it made it easier to identify the top AI bulls for siring the next generation. Use
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of percentile rankings helped breeders put active AI bulls in their proper per-
spective both before and after updates of the genetic base. Eventually percentiles
were shifted from PD$ to the index Lifetime Net Income that considered many
additional traits.

5.8 Choosing Among Published Genetic Evaluations

Historically, genetic information has often been provided from many sources.
Many dairy breeders are still faced with this issue today. One example that faced
breeders in several countries in the last decade was whether when buying semen
to use the domestic evaluation lists, calculated only from daughters in their own
country, or instead to select bulls from the list provided by Interbull. Even in
the US, evaluations based on regional data have been published (and still are),
with the implication that they were more useful for the dairy producers in the
region. Nevertheless, different evaluations use different records, different edits, in
addition to different procedures, so it seemed worthwhile to examine the merits
of relying on different bull lists, which had seldom been done.

National and regional evaluations published in the United States were com-
pared for their ability to predict standardized milk yield of subsequent daughters
(Norman et al., 2005). This was repeated 2 ways. First, there was a comparison
in each year between the national (USDA MCC) and a regional list (from Cor-
nell University), both of which had been produced for 14 years, and second, a
comparison between national US evaluations and others derived from 4 regional
subsets (California, North Central, Northeast, and Southeast) for the same time
period calculated using the same procedure (the USDA Animal Model). This later
comparison addressed whether there was value from having separate evaluations
when there are regional differences in management of the daughters (e.g., large
California herds versus smaller Midwestern US herds).

In the first study, correlations between evaluations and first-, second-, and
third-parity yields of future daughters were calculated within herd-year-month
group. Mean correlations with predicted yield of future daughters across the
United States were higher for national Holstein evaluations (0.109, 0.111, and
0.082 for first, second, and third parities, respectively) than for Northeast eval-
uations (0.098, 0.085, and 0.061); corresponding correlations for predicting only
future Northeast daughters yields were similar, meaning the national evaluation
worked better even in the Northeast region.

Bull evaluations based on the first 5 parities of daughters that first calved
through 1991 in one of the following, either California, North Central, Northeast,
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or Southeast regions, as well as from the entire United States were compared with
standardized milk yields of daughters that calved later. Correlations with first-,
second-, and third-parity yields of future daughters were higher (from 0.001 to
0.011) for national than for regional evaluations. National evaluations were better
predictors of future-daughter yield, especially for California and the Southeast.
Evaluations based on only first parity were slightly better than those based on
the first 5 parities in predicting first-parity yield for 3 of 4 regions but were far
less useful in predicting second- or third-parity yield regardless of region.

Regional evaluations included fewer bulls because of limited numbers of
daughters in each region. The top 100 bulls for genetic merit for milk yield based
on regional rankings were inferior to the top 100 bulls based on national ranking
by 25 to 173 kg. Increased reliance on any actual or proposed regional rather than
national evaluations would reduce current US genetic gains. These studies make
it clear that even if one chooses to select their service bulls from a publication list
that might be based on more desirable statistical properties, there is no guarantee
that this decision will produce future daughters that are more profitable in his/her
own herd. The value of the ranking is not only dependent on the sophistication
of the evaluation procedure itself, but is highly dependent on the data edits,
standardization for any important effects not included in the evaluation model,
what data are available to use, and a number of other reasons.

Effectiveness of various genetic evaluations since 1960 (Council on Dairy
Cattle Breeding, 2013) and their widespread acceptance and use have been ex-
tremely successful in aiding US production efficiency and have allowed milk to
remain affordable to consumers by keeping prices low in relation to the “cost of
living” index. Sometimes the acceptance of new genetic discoveries took longer
than one felt it should have, but when the guidelines were sound and as more
producers eventually adopted them, the adopters became more efficient than the
non-adopters, and eventually became the majority.

5.9 MCC Cow Indexes

Cow evaluations were called CI in the MCC (Powell et al., 1976) as they
had been in previous evaluations (Miller, 1968). Information for the MCC CI
was a by product of the MCC bull evaluation process. The equation exhibited
some similarities to the PD equation in that it has 2 parts and combined direct
information with pedigree information.

CI = 1
2 [w(MCD) + (1− w)(Sire’s PD)]
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where w is a weighting factor derived from the amount of information available
for the cow and her sire, MCD is the cow’s average MCD, and the 1

2 is necessary
to go from a breeding value to transmitting ability.

In January 1981, the dam’s CI was included (Powell, 1978). Since the
dam’s CI includes information from her parents and the sire’s PD includes AM,
this new CI contains much of the information that would be included from a full
pedigree system.

CI = 1
2 [w(MCD) + (1− w)(Sire’s PD + Dam’s CI)]

The Repeatability for the CI was a function of the amount of information
for the MCD (largely number and length of lactations and number of modified
contemporaries) and the Reliabilities for the parents’ evaluations. For a given
amount of information on the cow, the higher the total R on parents, the lower w
becomes. For a given total parental R, the more information on the cow, the higher
w becomes. Later it was recognized that the CI even with the same stated base
were not quite comparable across time due to an unaccounted for improvement
over time in the merit of the dams of contemporaries (Powell, 1984). Thus, an
addition was made to the cow part of the equation to add an adjustment for
dams of contemporaries (ADC) according to the birth year of the cow. This small
adjustment resulted in making the base stationary which continued as each new
base was defined.
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Chapter 6

Cumulative Differences

HORIA GROSU
LARRY SCHAEFFER
SORIN LUNGU

6.1 Introduction

After almost two decades of the contemporary comparison method, dairy
cattle populations changed due to genetic progress. The assumptions upon which
the contemporary comparisons were made became less valid than they were ini-
tially because:

1. The tested bulls were no longer a random sample of bulls;

2. Sires originated from several populations of the same breed, and

3. The distribution of sires by farm was no longer random.

Genetic differences between farms caused unwanted changes in the evalu-
ations of bulls. As the bulls were ageing, their newer daughters had contemporar-
ies from younger bulls. Because the young bulls were sons of selected sires, their
daughters were expected to have higher genetic potential than the daughters from
older bulls. Under these circumstances, the comparison of young bulls with old
bulls systematically made the older bulls seem undervalued, because the differ-
ences between the two categories of daughters decreased in magnitude. Bar-Anan
and Sacks (1974) described a method which attempted to correct the deficiencies
of the contemporary comparison method by adjusting for the genetic level of the
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sires of the contemporaries. The Cumulative Difference method (CDM), defined
the breeding value of a sire consisting of

1. the comparison of daughter averages with contemporaries’ averages and

2. the adjustment for the genetic level of the sires of the contemporaries.

6.2 CDM Calculations

Table 6.1 contains data from 3 herds or contemporary groups for sires A
through I. Interest is in evaluating sire A. The first number is the number of
daughters, and the number in parentheses is the average of those daughters.

Table 6.1: Data to illustrate calculation of the cumulative difference method

Sire Previous Herds
CD 1 2 3

A 2(5800) 3(6000) 1(6200)
B -60 1(5500) 1(5400) 1(5700)
C +60 1(6000) 1(6100)
D +150 1(6500) 1(6400)
E -100 1(5500)
F +90 2(6100)
G +40 1(5900)
H +350 1(7100)
I -40 1(5400)

Theory gives that the daughter average, (DA)ik, of sire i in contemporary
group k has expectation equal to

DAik =
1

2
Si +

1

2
M ik +Hk + eik

where

Si is the sire true breeding value, M ik is the average true breeding value
of the dams of those daughters (mates of sire i in herd k), Hk is the herd envir-
onmental effect, and eik is the average of the residual effects of those daughters.

Similarly, the contemporary average, (CA−ik), of daughters of all sires
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except sire i in contemporary group k has expectation

CA−ik =
1

2
S−i +

1

2
M−ik +Hk + e−ik

where the terms have a similar definition to those in the daughter average.

Taking the difference, (DIFF), daughter average minus contemporary group
average gives

DIFF = DAik − CA−ik =
1

2
(Si − S−i) + (eik − e−ik)

where (M ik−M−ik) is assumed to be zero in the absence of selective matings. The
differences are weighted by a factor using the number of daughters and number
of contemporaries, wik,

wik =
nik · n−ik

(nik + n−ik)

The numerical results for the example data are shown in Table 6.2 .

Table 6.2: Example Calculations for Sire A

Item Herds
1 2 3

DA 5800 6000 6200
CA 6000 5850 6150
DIFF=DA-CA -200 +150 +50
daughters 2 3 1
contemporaries 3 6 4
wk 1.2 2.0 0.8
wk(DIFF) -240 +300 +40
Previous ave. CD +50 +20 +100
wk (CD) +60 +40 +80

Accumulating the differences and dividing by the sum of the weights gives

Ci =
(−240 + 300 + 40)

(1.2 + 2.0 + 0.8)
= +25.

Some countries ranked bulls based on Ci values, but other countries preferred to
adjust for the number of effective progeny and for heritability of the trait using
the following:
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CCi =

∑
wik · h2

(4 + (
∑
wik − 1) · h2)

× Ci,

which gives

CCA =
4 · 0.25

(4 + (3) · 0.25)
(+25) = +5.26

if h2 = 0.25. To adjust for the genetic merit of the contemporaries, the weighted

average of the previous cumulative difference, CD, of the sires of the contempor-
aries, are needed as shown in Table 6.2.

Let Ai be the weighted average of the contemporary sires’ CD values.

Ai =
(+60 + 40 + 80)

(1.2 + 2.0 + 0.8)
= 180/4 = +45.

Finally, the CDA for sire A is

CDA = CCi + Ai = 5.26 + 45 = +50.26.

Unfortunately, sires with lower numbers of daughters were systematically
disadvantaged compared to other bulls, and thus, Dempfle(1976) proposed using
the regression to account for number of effective progeny and heritability AFTER
adding Ai to Ci, rather than BEFORE. Then

CAi = Ci +Ai = +25 + 45 = +70

followed by

CDi =

∑
wik · h2

(4 + (
∑
wik − 1) · h2)

× CAi = 0.2104×+70 = +14.73.

The results can be seen to be different.

The method of cumulative differences should be iterated until the estimates
of CDi stabilize (i.e. stop changing). The resulting CD of a sire is an estimated
transmitting ability. Estimated breeding values are equal to twice the estimated
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transmitting ability.
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Chapter 7

Regressed Least Squares
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7.1 Introduction

Robertson and Rendel (1954) first proposed the use of least squares for cal-
culating breeding values of bulls. The idea was further developed by Searle (1964)
and Cunningham (1965). Henderson (1952, 1963) developed several procedures
for calculation of estimates from weighted least squares for fixed effects.

Regressed least squares involves solving a set of least squares equations
for a model with contemporary groups and sires, and afterwards regressing the
solutions for sires towards the population mean based on number of effective
daughters and heritability. Henderson(1978) discussed the deficiencies of regressed
least squares in detail, one of which is that the estimators are not unique, but
depend on the restrictions used to obtain a solution to the least squares equations.

The model for an individual animal is

yijkl = Hi +
1

2
Sj +

1

2
Mk + εijkl

where yijkl is the observation on daughter l of sire j and dam k making a record in
herd i; Hi is the herd (or contemporary group) effect; Sj is the sire true breeding
value; Mk is the dam true breeding value; and εijkl is the residual effect. The
phenotype is assumed to be adjusted for age and season of calving, lactation
length, and number of times milked per day. Dams are assumed to be random
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and of equal genetic quality for all cows with records. Each dam is assumed to
have only one progeny in the data. Each daughter is assumed to have only one
record. Sires and herds are random factors, but least squares treats these factors
as fixed effects in the calculations. Now let 1

2Sj be equal to sj , which is the
transmitting ability of the sire. Dams are assumed to have only one progeny each
so that it can be combined with the residual term, giving

eijkl =
1

2
Mk + εijkl.

Note that σ2
ε contains 0.5σ2

A, one half the additive genetic variance. The final
model is (eliminating the k subscript)

yijl = Hi + sj + eijl.

The daughter average, DA, in a particular herd is

DAj = Hi + .5Sj + .5M j + εj .

Assume there are n progeny in the herd, then

V ar(DAj) = 0.25σ2
S +

0.25

n
· σ2

M +
σ2
ε

n

If σ2
S = σ2

M = σ2
A, where σ

2
A is the additive genetic variance, then

V ar(DAj) = 0.25 · σ2
A +

σ2
e

n

where

σ2
e = 0.25 · σ2

A + σ2
ε

also,

σ2
e = (1− 0.25 · h2)σ2

y

σ2
A = h2σ2

y
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then

V ar(DAj) = (0.25 · h2 +
1− 0.25 · h2

n
)σ2
y .

The covariance of the daughter average with the sire’s true breeding value is

Cov(Sj , DAj) = 0.5 · σ2
A

= 0.5 · h2 · σ2
y .

Let the model be written in matrix notation as

y = Xh + Zs + e

where h are the herd effects; s are the sire transmitting abilities; y are the daughter
records; X relates observations to the herds in which they were made, and Z
relates observations to the sires of the cows; and e are the residual effects. The
variability of the residual effects was commonly assumed to be the same for each
herd or contemporary group.

The ordinary least squares equations are written as(
X′X X′Z
Z′X Z′Z

)(
ĥ
ŝ

)
=

(
X′y
Z′y

)
The order, or size, of the equations is equal to the number of herds plus the
number of sires, and so the number of unknowns for which to solve could be
many thousands.

7.2 Absorption

Often there were many more contemporary groups than there were sires,
and one technique for reducing the size of the equations was to “absorb” contem-
porary group equations into sire equations. The reduced equations would be

Z′(I−X(X′X)−1X′)Z ŝ = Z′(I−X(X′X)−1X′)y

and let
S = (I−X(X′X)−1X′)

then the equations are written simply as

Z′SZ ŝ = Z′Sy.
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If the absorption is done properly, then the sum of elements in each column
of Z′SZ should be zero, and the sum of the elements of Z′Sy should be zero. This
means that Z′SZ has a zero determinant, which implies that the matrix does
not have an unique inverse, which means that there are an infinite possibility
of solution vectors for ŝ. In order to apply regressions to the LS solutions, the
restriction to the equations would be to force the sum of the sire solutions to be
zero. Thus, the equations are now(

Z′SZ k
k′ 0

)(
ŝ
x

)
=

(
Z′Sy
0

)
where k is a column vector with all elements equal to 1 with length equal to the
number of sires.

Also, the matrix Z′SZ is of order equal to the number of sires, and almost
all elements of this matrix are non-zero. In 1963 with the computer hardware of
that day, a direct inverse of this matrix was not possible and could be subject
to large rounding errors. Solving the equations was not a trivial exercise in the
1960’s. One problem would have been storing Z′SZ in memory so that it could
be inverted.

7.3 Solutions and Estimated Breeding Values

The LS solutions were(
ŝ
x

)
=

(
Z′SZ k
k′ 0

)−1(
Z′Sy
0

)

=

(
C ck
c′k 0

)(
Z′Sy
0

)
The diagonals of C times σ2

e gives the variance of the sire solutions.

Estimated breeding value for sire j is given by

EBVj = bj · ŝj

where
bj =

Cov(Sj , ŝj)

V ar(ŝj)

and Sj is the true breeding value of the sire.



7.4. NUMERICAL EXAMPLE 83

From earlier, if ŝj is replaced by DAj , then the regression of sire true
breeding value on daughter average (subtracting the average of the contemporar-
ies) would be

bj =
Cov(Sj , DAj)

V ar(DAj)

=
0.5 · h2 · σ2

y

(0.25h2 + 1−0.25h2

n )
σ2
y

=
0.5h2

(0.25h2 + 1−0.25h2

n )

=
0.5h2 · n

(0.25h2 · n + (1− 0.25h2))

=
2nh2

(nh2 + (4− h2))

=
2n

n + (4−h2)
h2

=
2n

n + k

for k = (4−h2)
h2

.

If cjj is a diagonal element of C, and if we replace DAj by ŝj , then

V ar(ŝj) = 0.25 · h2 · σ2
y + cjj · (1− 0.25h2)σ2

y

thus,

bj =
2c−1
jj

c−1
jj + k

,

and
EBVj = bj · ŝj .

7.4 Numerical Example

Table 7.1 contains example data on 3 bulls and two contemporary groups.
The first number is the number of daughters, and the second number in paren-
theses is the sum total of the daughter records. The resulting LS equations are
of order 6 including the restriction to force the sire solutions to add to zero.
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Table 7.1: Example Data for Least Squares Method. CG = Contemporary Group

Sire Herd 1 Herd 2 Sire totals
1 2(9,100) 2(8,000) 4(17,100)
2 5(20,200) 3(13,100) 8(33,300)
3 1(4,500) 5(19,600) 6(24,100)

CG
Totals 8(33,800) 10(40,700)

7.4.1 LS Equations

The full equations are

8 0 2 5 1 0
0 10 2 3 5 0
2 2 4 0 0 1
5 3 0 8 0 1
1 5 0 0 6 1
0 0 1 1 1 0





ĥ1

ĥ2

ŝ1

ŝ2

ŝ3

x


=



33, 800
40, 700
17, 100
33, 300
24, 100

0


The equations with the restriction are full rank, and therefore can be inverted.
However, the contemporary group equations will be absorbed into the sire and
restriction equations (with no effect on the restriction equation). The result is

3.100 −1.850 −1.250 1
−1.850 3.975 −2.125 1
−1.250 −2.125 3.375 1

1 1 1 0




ŝ1

ŝ2

ŝ3

x

 =


+510
−35
−475

0


The effective number of daughters of the sires are the diagonals of the above
matrix, namely, 3.100, 3.975, and 3.375 for sires 1, 2, and 3, respectively.

7.4.2 Solutions and EBV

The solutions are
ŝ1

ŝ2

ŝ3

x

 =


0.1448 −0.0612 −0.0836 0.3333
−0.0612 0.1120 −0.0509 0.3333
−0.0836 −0.0509 0.1345 0.3333

0.3333 0.3333 0.3333 0.0000




+510
−35
−475

0

 ,
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
ŝ1

ŝ2

ŝ3

x

 =


115.7303
−10.9551
−104.7753

0.0000

 .

The residual variance would be estimated by taking the total sum of
squares of all records minus the reduction due to fitting the model and then
dividing by the number of records minus the rank of (X Z).

σ2
e = (310, 150, 000 − 308, 563, 174)/(18 − 4) = 113, 345.

The variances of the estimators of the sire solutions would be

Sire1 = 0.1448× 113, 345 = 16, 412.356

Sire2 = 0.1120× 113, 345 = 12, 694.64

Sire3 = 0.1345× 113, 345 = 15, 244.9025

The square root of the above give the standard errors, 128.1, 112.7, and 123.5,
respectively. Note that the standard errors are larger than the corresponding sire
solutions.

If heritability is assumed to be 0.25, then the EBV for sire 1, c−1
jj = 6.9061

and k = 15 for h2 = 0.25, would be

EBV1 =
2 · 6.9061

6.9061 + 15
× 115.7303

= 0.63052× 115.7303

= +72.9701

Likewise for sires 2 and 3, giving

EBV2 =
2 · 8.9286

8.9286 + 15
×−10.9551

= −8.1754

EBV3 =
2 · 7.4349

7.4349 + 15
×−104.7753

= −69.4452.
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7.4.3 Comparison to CDM

Below is Table 7.2 showing information for sire 1, similar to Table 6.2 (page
75), in order to show the linkage between the Cumulative Difference Method and
Least Squares.

Table 7.2: Sire 1 Information For CDM

Item Herds
1 2

DA 4550 4000
CA 41162

3 40871
2

DIFF 4331
3 −871

2
daughters 2 2
contemporaries 6 8
wk 1.5 1.6

Notice that

2∑
k=1

wk(DAk − CAk) = 1.5(433.33333) + 1.6(−87.5)

= 510

which is the value in Z′Sy for sire 1. Also,

2∑
k=1

wk = (1.5 + 1.6) = 3.1

which is the diagonal of Z′SZ for sire 1. Next, the CDM gives the sire solution as

C1 =
510

3.1
= 164.5161

This step should be followed with the correction for the sires’ Ci of the contem-
poraries, and the process should be iterated until the Ci stabilize. The correction
for sire 1 would be

Ai = (1.85× C2 + 1.25× C3)/3.1

The new C1 would be C1 + A1. After each iteration, the Ci should be forced to
sum to zero, by subtracting the mean of the Ci from each Ci. This will give the
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solutions to the least squares equations when the solutions stabilize.

After these solutions stabilize, then the last step would be to regress the
Ci for numbers of effective daughters and heritability of the trait.

EBV1 =
2 · 3.1

3.1 + 15
C1.

The CDM, however, adjusts the Ci for the sires of contemporaries using
regressed values rather than other Ci values, and therefore, the EBV from CDM
should be different from regressed least squares EBVs.

The least squares equations appear to be a more direct and easier calcu-
lation strategy than CDM.

7.5 Summary

Regressed least squares had a number of deficiencies as pointed out by
Henderson(1978), but by modifying the procedure the results could be made equi-
valent to solutions from mixed model equations, although much more difficult to
calculate. However, the least squares solutions at least accounted for the level
of competition within each contemporary group, and for the unequal distribution
of sires’ daughters among contemporary groups. The contemporary comparison
methods were simplified versions of the least squares method to make calculations
practical.
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8.1 Charles R. Henderson

Charles R. Henderson was a graduate of Iowa State University under L. N.
Hazel and J. L. Lush. He was one of the more statistically minded students, and
during his thesis studies he modified least squares equations and found that the
resulting solutions were equivalent to Lush’s selection index, when the means were
known. However, it was not until he met Shayle Searle that he became converted
to matrix algebra and with Searle’s help proved that mixed model solutions were
equivalent to Best Linear Unbiased Prediction estimates. Henderson advocated
the linear model approach for many years in his graduate course. Paul Miller
(1970) was his first student to apply mixed models to the estimation of age and
month of calving adjustment factors for dairy milk production.

Henderson was a dominant force at scientific meetings in the USA, and
not many people outside of Cornell University could understand the subtle points
of linear models, estimability, and mixed model equations because matrix al-
gebra was not commonly taught. Even for Cornellians, one had to sit through
Henderson’s course more than once, and after that you became used to his speech
and his emphasis on different points. He was always very precise about the as-
sumptions and conditions relating to his comments, and was usually always right.
Once Henderson had spoken, the answer was definitive and no further questions
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remained.

Cornell University started with a Sire Model for genetic evaluation in 1972,
and in 1976 added genetic relationships among the sires. The programs were all
written by Henderson, in Fortran, and ran on an IBM 360 machine with 128K of
memory. Data were stored on large reels of magnetic tape, and later on 5 or 6
tiered disk drives, as large as a hat box, that gave fast access to data, and made it
easier to sort files than on magnetic tapes. All data had to be entered on punched
cards.

Henderson was forced to retire in 1976, but he became more productive
after he retired, and seemed to be trying to solve all current problems in animal
breeding. By 1989, the year he died, the animal model had come into vogue.
He had taught the animal model since the 1960’s but he called it the individual
cow model. The cow model was dubbed the animal model by Quaas and Pollak
(1980). Nearly every country in the world now uses a linear model approach
(animal model) and applies mixed model equations. The mixed model equations
are also used with genomic data today. It is appropriate to acknowledge this huge
contribution of C. R. Henderson to animal genetic evaluations, in all species of
livestock.

8.2 Best Linear Prediction

A mixed linear model, in matrix notation, is

y = Xb + Zu + e

where

y is an N × 1 vector of phenotypic observations on the traits and animals of
interest,

b is a p×1 vector of fixed effects (environmental variables that can be identified)
that influence the phenotypic observations,

u is a q × 1 vector of random effects (like contemporary groups, litters, and per-
manent environmental effects) that influence the phenotypic observations,

e is an N × 1 vector of residual effects, and

X,Z are matrices that relate elements of b and u to y. Thus, X has order N×p,
and Z has order N × q.
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Random factors in a model follow a distribution function, usually a normal
distribution, which has a mean and variance structure. To find the Best Linear
Predictor of u the distribution, means, and variance structures must be known.
That is,

V ar(y) = V

V ar(u) = G

Cov(u,y) = GZ′

E(y) = Xb

E(u) = 0

The Best Linear Prediction (BLP), is

û = GZ′V
−1

(y − Xb)

which does not depend on the distribution functions of y or u. This formula is
exactly the formula used in the selection index method. This formulation has
some serious deficiencies.

1. The means of the random variables must be known. Note that Xb includes
the effects of age at calving, herd-year-season of calving, genetic groups,
number of times milked, lactation lengths, and possibly other factors. Prac-
tically, the means for all of these effects are not known perfectly. The means
depend on the sample of data that is available.

2. In some cases the variances and covariances are unknown, such as when
analyzing a new breed or new trait for the first time.

3. Inversion of V with very large numbers of observations is impossible to
calculate.

8.3 Best Linear Unbiased Prediction

The model is the same as in the previous section. Now assume that E(y)
is not known. Logically, we need to replace Xb with an estimate of Xb. The
variance and covariance structures and parameters are still required to be known.
The predictor of u is to be a linear function of y, say L′y, and we must require
that

E(u) = E(L′y).
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By minimizing

E(L′y − u)2

subject to requiring the predictor to be unbiased, then the resulting Best Linear
Unbiased Prediction (BLUP) is

û = GZ′V
−1

(y − Xb̂)

where

b̂ = (X′V
−1

X)− X′V
−1

y.

Thus, b̂ is the Generalized Least Squares (GLS), of b. In selection index, often

raw means for some fixed factors were used, but from this development, the better
alternative would have been to use GLS estimates of those fixed factors.

Note again, that the predictor involves the inversion of V. Henderson
frequently knew where developments were headed, so he would try ideas out on
empirical data. In doing this he found that modifying least squares equations gave
selection index results, or BLUP solutions. Thus, he deduced that there must be
a mathematical proof or derivation to go from

û = GZ′V
−1

(y − Xb̂)

to his modified least squares equations. To prove this, Henderson needed to show
that

V−1 = R−1 −R−1ZTZ′R
−1

where
T = (Z′R

−1
Z + G−1)−1.

You multiply VV−1 and show that the result is an identity matrix.

The story Henderson gave was that he left the problem on a piece of paper
at Shayle Searle’s desk while he went for a coffee break (sometime in 1967 while
Henderson was in New Zealand).

When Henderson returned to his office, there was a proof given on the same
paper. So, even though Henderson published his modified least squares equations
in 1950, it was not until 1967 that he proved the solutions were equivalent to
BLUP.
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8.4 Mixed Model Equations

The Mixed Model Equations (MME) of Henderson (1973) are(
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z + G−1

)(
b̂
û

)
=

(
X′R−1y

Z′R−1y

)
.

Thus, in order to apply these equations we need to know how to construct X,
Z, G−1, R−1, and y. The MME are general for any linear model with fixed
and random effects. The linear model could be a sire model, an animal model, a
test-day model, or genomics model. Each model might have a different X matrix,
for example, but we know where it goes in MME, and the same for the other
components of MME. Hence in the following chapters we will show how to create
these components for different models. Once the parts are known, then the next
step is to set up and solve the MME.

The solutions to the MME are

(
b̂
û

)
=

(
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z + G−1

)−(
X′R−1y

Z′R−1y

)
.

Let (
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z + G−1

)−
=

(
Cxx Cxz

Czx Czz

)
,

then Henderson (1973) has shown

Cov(b̂, û) = 0

Cov(b̂,u) = Cxz

Cov(b̂, û− u) = Cxz

V ar(û) = G−Czz

V ar(û− u) = Czz

The diagonals of Czz give the variances of prediction error for the predict-
ors of u. Because the size of the MME are often too large to obtain an inverse
of the coefficient matrix, then the diagonals of Czz are approximated, and vari-
ous methods have been proposed. The solutions to MME are computed using
iteration techniques, of which there are several possible variations (Schaeffer and
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Kennedy, 1986). Sometimes the models allow simplifications to be made which
make the calculations easier to complete.

The residual variance can be estimated using

σ̂2
e = (y′y − b̂′X′R

−1
y − û′Z′R

−1
y)/(N − r(X))

where r(X) is the rank of the matrix X which is the number of linearly independ-
ent columns, also known as a degrees of freedom for fitting the fixed effects of the
model.

8.5 Linear Models

The readers should be clear that BLUP and MME are just tools that
are used to derive predictors that have certain desirable properties. The more
important aspect in genetic evaluation is the description of the linear model.
What factors are being considered? What parameters are being used? Are all
important factors included in the model? These are the questions that need to
be properly answered.

A person might tell you that BLUP was used, but when they disclose
their model you discover that one or two important factors have been omitted,
and thus, the sire EBV could be severely biased. So that any method could have
been used to get predictors, and they all might give biased EBV, due to a poor
model. The critical point is finding the most useful model. Being able to write
a good model requires experience, and trial and error. Model comparisons are a
common task in animal breeding.

A complete linear model consists of

• an equation giving a list of all of the factors to be considered in the analysis,

• the distributions of the random variables in the model including the expect-
ations and variance structure of each factor, and

• the assumptions and limitations imposed by the data and computer hard-
ware.

Only if all of these parts are provided can the quality of the model be judged.
There is a saying in statistics that all models are wrong, and that is definitely
true. However, when we write a linear model we are trying to provide the best
approximation to our vision of the correct model. Another way to put it, is
that the true underlying model is totally unknown. The best model may not be
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linear and may be a complex amalgamation of several simple processes. Animal
breeders have, so far, worked primarily with linear models because they are easy
to understand, and they perform very adequately in the majority of situations.

8.5.1 Fixed or Random Factors

A difficult part of modelling is determining which factors are fixed and
which are random. When a factor is random we usually think of a population
of levels of that factor with an overall mean (usually zero) and with a certain
variance. The levels that appear in our data are assumed to be a random sample of
levels from the overall population. There is no process that limits which samples
appear in our data. Sires have always been considered to be a random factor.
Even though sires are selected for progeny testing, usually the sire and dam have
been selected to produce the young bull, but Mendelian sampling has produced a
random progeny from that mating. Thus, the young bull is still a random entity,
in that sense.

Herd-year-seasons or contemporary group effects are also a random factor.
The animals within a contemporary group arrive there by chance. The environ-
ment that exists in that contemporary group is a random event due to a combin-
ation of location, weather, management, and composition of animals within the
group. That particular combination will never exist again. The contemporary
group has a definite genetic level by virtue of the genotypes of the animals within
the group. In the contemporary comparison method, however, the assumption
was that the genetic level was fairly equal across contemporary groups. In an
animal model we can account for both the environmental and genetic levels of
the contemporary groups because we know which animals are in each contempor-
ary group. In a sire model, we need the assumption that the genetic levels of
contemporary groups are equal, or at least the effect is not very large.

When sire models were first implemented, Henderson made contemporary
groups as fixed factors. According to his selection bias theory, any association
between genetic level of the herd-year-season and the sires used in that herd
could be removed by treating herd-year-season effects as fixed. Thus, from that
point on, everyone believed Henderson was correct and contemporary groups have
always been fixed factors. However, no one has ever demonstrated the existence of
the association, nor how large of an effect it was. Secondly, Henderson’s selection
bias theory has been disclaimed by several scientists in recent years and therefore,
treating contemporary groups as fixed does not necessarily remove bias. Lastly,
sire models are no longer used, and it has not been shown that any bias exists
with animal models. Thus, the best course of action, until proven otherwise, is to
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let contemporary groups remain random, as they were originally classified.

If contemporary groups are random, then models need a fixed factor like
year-month of calving to account for time trends. This will be discussed further in
the chapter on animal models. The key point of this discussion is that determining
factors to be fixed or random is not always simple.

8.6 Relationship Matrices

Besides BLUP and MME, Henderson (1953) developed three methods of
estimating variance components (known as Henderson’s Methods 1, 2, and 3)
during his PhD thesis project.

These methods were unbiased procedures that were relatively easy to cal-
culate in those days, but which often yielded negative estimates of variances.
However, his methods were used extensively until the 1970’s, when they were
replaced by likelihood methods which kept estimates of variances within their
allowable parameter space. Henderson’s three methods provided heritability and
repeatability estimates for use in genetic evaluation methods. His variance estim-
ation methods indirectly impacted on genetic evaluation methods.

The third most important discovery of Henderson’s career, after MME and
the methods for estimating variance components, was the discovery of a method
to invert a matrix of additive genetic relationships using only a pedigree list
and a simple set of rules (Henderson, 1976). This discovery made it possible to
account for genetic relationships among individuals within and across herds in
both sire and animal models. Without this discovery, animal models could have
been delayed another ten years. Although Henderson’s paper only talked about
matrices for non-inbred animals, several subsequent papers were written on the
fast calculation of inbreeding coefficients, such as Meuwissen and Luo (1992). This
enabled inbred animals to be included in analyses.

Henderson wanted to include relationships among bulls in the Northeast
AI Sire Comparison at Cornell University. He inverted many small example rela-
tionship matrices and eventually noticed a pattern. Once he verified the pattern
with other examples, then it was not long (a day) before he proved the results
mathematically.

Today everyone uses relationship matrices in genetic evaluation and they
use MME to obtain the evaluations without referring to the original Henderson
publications. His discoveries have become commonplace and accepted while the
name Henderson fades into ancient history.
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8.6.1 Sire-MGS Relationships

Below (Table 8.1), are a few sire-MGS pedigrees.

Table 8.1: Example pedigrees

Bull Sire MGS
1 - -
2 - -
3 - -
4 1 2
5 2 3
6 4 -
7 - 1

Notice that bulls can have both parents unknown, both parents known, or
either sire or MGS unknown. Following Henderson (1975), let

δ = 1 if both parents are unknown
δ = 16/11 if both parents are known
δ = 4/3 if the MGS is unknown, and
δ = 16/15 if the sire is unknown.

The inverse of the relationship matrix, commonly denoted by A−1, begins
as a null matrix. Then each animal in the pedigree list is processed, one at a
time, to add numbers to the appropriate locations in A−1. The rules for adding
to A−1 are

sire MGS bull
sire .25 δ .125 δ −.5 δ
MGS .125 δ .0625 δ −.25 δ

bull −.5 δ −.25 δ δ

Bulls 1, 2, and 3 have δ = 1 and both parents are unknown, so that δ is
simply added to the diagonal elements for the rows corresponding to bulls 1, 2,
and 3. Bulls 4 and 5 have δ = 16/11 because both parents are known. For bull
4, add δ to the diagonal for bull 4, .25δ to the diagonal for bull 1, and .0625δ to
the diagonal for bull 2. Then add .125δ to the off-diagonals between bulls 1 and
2, subtract .5δ to the off-diagonals between bulls 4 and 1, and subtract .25δ to
the off-diagonals between bulls 4 and 2. The results to this point are
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A−1 =



15
11

2
11 0 − 8

11 0 0 0
2
11

12
11 0 − 4

11 0 0 0
0 0 1 0 0 0 0

− 8
11 − 4

11 0 16
11 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

For bull 6, the MGS is unknown, so additions are made to the bull diagonal,
bull 4 diagonal, and a subtraction to the off-diagonal between bulls 6 and 4. For
bull 7, the sire is unknown, so additions are made to the diagonals for bull 7 and
bull 1, and to their off-diagonals. This completes A−1, as shown below.

A−1 =



136
165

2
11 0 − 8

11 0 0 − 4
15

2
11

16
11

2
11 − 4

11 − 8
11 0 0

0 2
11

12
11 0 − 4

11 0 0
− 8

11 − 4
11 0 59

33 0 −2
3 0

0 − 8
11 − 4

11 0 16
11 0 0

0 0 0 −2
3 0 4

3 0
− 4

15 0 0 0 0 0 16
15


.

8.6.2 Sire-Dam Relationships

For animal models, with the usual animal, sire, and dam pedigree lists, we
need to know the inbreeding coefficient of every animal. To calculate inbreeding
coefficients, animals must be sorted chronologically so that the an animal’s par-
ents appear in the pedigree list prior to the animal itself. One should not rely
100% on birthdates to sort animals, because errors are known to exist in pedigree
lists. Meuwissen and Luo (1992) give a good algorithm for computing inbreeding
coefficients.

In Table 8.2, is a partial pedigree list for a few animals with their inbreeding
coefficients.

Now we must determine the fraction of Mendelian sampling variance is
remaining in each animal. That quantity is given by

fi = 0.50 − 0.25× (Fsire + Fdam)

where Fsire and Fdam are the inbreeding coefficients of the sire and dam of the
animal. For animals A through E the parents are all non-inbred, so that the
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Table 8.2: Example pedigrees with inbreeding coefficients, Fi

Animal Sire Dam Fi
A X Q 0
B X Q 0
C X W 0
D A B 1/4
E B C 1/8
F D E 1/4

fraction of Mendelian sampling variance in their genome is one half of the additive
genetic variance.

The parents of animal F, however, are both inbred, and therefore,

fF = 0.5− 0.25× (0.25 + 0.125) = 0.40625 = 13/32.

The value of δ for animal F is

δ = 32/13 = 1/fF .

Because sires and dams can have many combinations of inbreeding coef-
ficients, the number of different values for fF can be very large, and therefore,
there are also many different possible values for δ. However, is an animal has both
parents unknown, then δ = 1, and if either one of the two parents is unknown,
then δ = 4/3, assuming that the unknown animals are not related.

The rules for adding to A−1 are similar to those for the sire-MGS inverse
matrix, but simpler, i.e.

sire dam animal
sire .25 δ .25 δ −.5 δ
dam .25 δ .25 δ −.5 δ
animal −.5 δ −.5 δ δ

The animals in the complete pedigree list are processed one animal at a time until
A−1 is completed.
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9.1 Northeast AI Sire Comparison - 1972

The sire model implemented in the first Northeast AI Sire Comparison
was

yijkl = Hi + gj + sjk + eijkl,

where

yijkl was a first lactation production yield of the lth daughter of the kth sire in
the ith herd-year-season of calving,

Hi was a fixed, herd-year-season of calving effect,

gj was a fixed, genetic group of sire effect,

sjk was a random, sire transmitting ability, and

eijkl was a random residual effect (including dam and Mendelian sampling effects
as well as temporary environment).

The expected values of sjk and eijkl were all zero, and V ar(sjk) = 0.25·h2 ·
σ2
y and V ar(eijkl) = σ2

e = (1 − 0.25h2)σ2
y . The residual variance was assumed

constant for all daughters and all herd-year-seasons. The ratio σ2
e/σ

2
s = 15,
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assuming heritability was 0.25. Sires were assumed to be unrelated, and therefore,
if s represents the vector of all sire effects, then

V ar(s) = Iσ2
s .

9.1.1 Genetic Groups

Genetic groups of sires were based on their year of birth, and on the AI
organization that entered them into progeny testing. Natural service bulls were
not evaluated. The idea was that different AI studs applied different selection
strategies when entering young bulls, and thus, those populations could have
different genetic means over time. Because the data came from the Northeast
USA, most of the bulls were from Eastern Breeders in Ithaca, NY, or natural
service bulls. Bulls from other AI studs were not completely represented, but
were only bulls that dairy producers in the Northeast USA could afford to buy
from other AI studs.

9.1.2 Data

Only first lactation production records were used which gave fewer records
per sire upon which to base EBVs. The belief was that culling of cows after first
lactation would introduce biases into genetic evaluations of bulls. Some years
later the model was changed to include multiple records of cows. Production
records were adjusted for age and month of calving and only records from herds
that milked 2 times per day were included. If a bull had daughters in the herd
from which he was born, then those daughters were excluded from the data. The
assumption was that the herd owner may have provided preferential treatment to
those daughters to make the bull look better than he might actually be. This edit
often reduced the size of herd-year-season groups, which affected the accuracy of
bull genetic evaluations.

9.1.3 Dams

Sires were assumed to be randomly mated to dams (same genetic level,
on average), and dams were assumed to have one progeny only in the data. This
was obviously not true, but the assumption was necessary with this model. The
genetic level of the contemporaries was considered by having Contemporary Group
(CG) in the model, so that the assumptions about dams were not as critical.
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9.1.4 Herd-year-seasons

Henderson (1975) published a paper in Biometrics on his selection bias
theories, and the paper was the foundation for the treatment of herd-year-season
effects as a fixed factor in the Northeast AI Sire Comparison. Subsequently, this
theory was criticized by Robin Thompson (1979), Daniel Gianola (1988), and
Richard Quaas (1980). In retrospect, it may have been better to let HYS effects
be random as they obviously are. However, this one little assumption has carried
over into all genetic evaluation methods in almost all livestock species, when for
many situations HYS should be a random factor. One problem with fixed HYS
effects is that any HYS where all the cows are from the same sire, then none of
that information is used in genetic evaluation. If you “absorb” that HYS equation,
then all zeros are created and nothing is added to the sire equations. Also, if a
HYS has only one cow in it, then that information is also lost. For many European
countries, HYS size was much smaller than in the USA, and consequently much
data were not being used in genetic evaluations. However, if HYS had been
random, then those records would have been utilized.

9.1.5 Random Samples

The sire model implicitly assumes that sires are mated randomly to dams.
From matings to those dams, the daughters represented in the data are assumed to
be a random sample of all possible daughters. Within HYS each cow is expected to
receive the same level of treatment and care. That means that no cow is to receive
special treatment (like extra feed or being kept in its own stall). For the most
part these assumptions are met, but there can be situations where preferential
treatment does exist. Also, due to different price structures for proven versus
unproven bulls, the randomness of mates may not be a valid assumption.

9.1.6 Numerical Example

The following table (Table 9.1)contains the subclass numbers of cows per
herd, year-season, and sire subclasses.

Thus, there are 9 herd-year-season subclasses and 6 sires. Let sires 1, 2,
and 3 belong to genetic group 1, and sires 4, 5, and 6 belong to genetic group 2.
The records are not shown, but there are 91 first lactation records in this small
example. The total sum of squares was 4, 049, 535, 091.

In matrix notation, the model is

y = Xhh + Xgg + Zss + e.
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Table 9.1: Subclass numbers for example calculations

Herd Year- Sires
Season 1 2 3 4 5 6

1 1 2 1 0 0 4 3
2 1 3 5 0 1 2
3 0 2 3 0 2 2

2 1 1 2 0 5 1 2
2 1 1 2 3 1 0
3 1 3 2 2 0 2

3 1 0 1 3 2 0 3
2 0 4 1 2 1 5
3 0 1 4 2 0 2

Thus,

X = (Xh Xg) (9.1)
Z = Zs (9.2)

b =

(
h
g

)
(9.3)

u = s (9.4)
G = Iσ2

s (9.5)
R = Iσ2

e (9.6)

The MME are(
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z + G−1

)(
b̂
û

)
=

(
X′R−1y

Z′R−1y

)
where (

X′R−1X X′R−1Z

Z′R−1X Z′R−1Z + G−1

)
=

1

σ2
e

 X′hXh X′hXg X′hZs
X′gXh X′gXg X′gZs
Z′sXh Z′sXg Z′sZs + I 1

σ2
s


(

b̂
û

)
=

 ĥ
ĝ
ŝ

 ,
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and (
X′R−1y

Z′R−1y

)
=

1

σ2
e

 X′hy
X′gy
Z′sy

 .

Multiply both sides of the MME by σ2
e , and the resulting equations are X′hXh X′hXg X′hZs

X′gXh X′gXg X′gZs
Z′sXh Z′sXg Z′sZs + Ik

 ĥ
ĝ
ŝ

 =

 X′hy
X′gy
Z′sy

 .

The order of these equations, for the example data, are (9 + 2 + 6) or 17 and the
rank of the equations is 16.

Matrix Xh was 91 rows by 9 columns, one for each of the herd-year-seasons.
Each row contained one 1 corresponding to the herd-year-season in which the
record was made.

Matrix Xg was 91 rows by 2 columns, one for each genetic group. Each
row had a one and a zero, with the one in the column of the group to which the
sire of the cow was a member.

Matrix Zs was 91 rows by 6 columns, one for each sire. Each row had a
one corresponding to the sire of the cow making the record.

The 91 records were ordered herd-year-seasons within sires (i.e. by columns
of Table 9.4). Thus, the first 6 observations in y were progeny of sire 1, followed
by the 18 of sire 2, and so forth. The order of records in y must be maintained
in Xh, Xg, and Zs. The mixed model equations were



10 0 0 0 0 0 0 0 0 3 7 2 1 0 0 4 3
0 12 0 0 0 0 0 0 0 9 3 1 3 5 0 1 2
0 0 9 0 0 0 0 0 0 5 4 0 2 3 0 2 2
0 0 0 11 0 0 0 0 0 3 8 1 2 0 5 1 2
0 0 0 0 8 0 0 0 0 4 4 1 1 2 3 1 0
0 0 0 0 0 10 0 0 0 6 4 1 3 2 2 0 2
0 0 0 0 0 0 9 0 0 4 5 0 1 3 2 0 3
0 0 0 0 0 0 0 13 0 5 8 0 4 1 2 1 5
0 0 0 0 0 0 0 0 9 5 4 0 1 4 2 0 2

3 9 5 3 4 6 4 5 5 44 0 6 18 20 0 0 0
7 3 4 8 4 4 5 8 4 0 47 0 0 0 16 10 21

2 1 0 1 1 1 0 0 0 6 0 21 0 0 0 0 0
1 3 2 2 1 3 1 4 1 18 0 0 33 0 0 0 0
0 5 3 0 2 2 3 1 4 20 0 0 0 35 0 0 0
0 0 0 5 3 2 2 2 2 0 16 0 0 0 31 0 0
4 1 2 1 1 0 0 1 0 0 10 0 0 0 0 25 0
3 2 2 2 0 2 3 5 2 0 21 0 0 0 0 0 36





Ĥ1

Ĥ2

Ĥ3

Ĥ4

Ĥ5

Ĥ6

Ĥ7

Ĥ8

Ĥ9

ĝ1
ĝ2
ŝ1
ŝ2
ŝ3
ŝ4
ŝ5
ŝ6


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=



56, 484
80, 694
63, 317
68, 581
53, 426
71, 054
58, 639
86, 029
65, 623

290, 395
313, 452

32, 149
113, 554
144, 692
112, 748
57, 792

142, 912



There are an infinite number of solution vectors possible, but we will use the
restriction that ĝ2 = 0. The solutions are (Table 9.2)

Table 9.2: Solutions to MME for example data to sire model

HYS estimate Group estimate Sire estimate
1 5877 1 -298 1 -235
2 6862 2 0 2 -102
3 7153 3 336
4 6281 4 187
5 6748 5 -264
6 7218 6 78
7 6480
8 6699
9 7260

Estimated transmitting abilities are calculated as the sum of genetic group
and sire solutions.

Sires 1, 2, and 3 are in group 1, and sires 4, 5, and 6 are in group 2, hence
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Sire 1 -298 -235 = -533
Sire 2 -298 -102 = -400
Sire 3 -298 +336 = +38
Sire 4 0.0 +187 = +187
Sire 5 0.0 -264 = -264
Sire 6 0.0 +78 = +78

Accuracy of the estimates is based on the standard errors of prediction.
For sire 1, as an example,

ETA1 = ĝ1 + ŝ1

V ar(ETA1 − TA1) = V ar(ĝ1) + V ar(ŝ1 − s1) + 2Cov(ĝ1, ŝ1 − s1)

= (cg1 + cs1 + 2cg1,s1)× σ̂2
e

where cg1 is the diagonal inverse element for the group 1 solution, cs1 is the
diagonal inverse element for the sire 1 solution, and cg1,s1 is the off-diagonal
element between group 1 and sire 1. The residual variance is given by

σ̂2
e = (y′y − b̂′X′y − û′Z′y)/(N − r(X))

For this example, σ̂2
e = 174, 940.9. For sire 1, cg1 = 0.09604, cs1 = 0.05252, and

cg1,s1 = −0.01446, so that

V ar(ETA1 − (TA)1) = (.11965× 174, 940.9).

The SEP, standard error of prediction is the square root of the variance of pre-
diction error, and is ±144.68 for sire 1. The results for the six sires are shown
below (Table 9.3).

Table 9.3: ETA and SEP for 6 example sires

Sire ETA SEP
1 -533 145
2 -400 124
3 38 125
4 187 90
5 -264 93
6 78 88
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9.2 Sire-MGS Relationships

In 1975, Henderson discovered a method for writing the inverse of a re-
lationship matrix constructed from sire and MGS (maternal grandsire) relation-
ships. Some details of this method were given in the previous chapter. In the
previous example, suppose that sires 1, 2, and 5 were half-sibs, sires 4 and 6 were
full-sibs, and sire 3 was unrelated to the others. Then a possible relationship
matrix would be as follows:

A =



1 .25 0 0 .25 0
.25 1 0 0 .25 0
0 0 1 0 0 0
0 0 0 1 0 .50
.25 .25 0 0 1 0
0 0 0 .50 0 1

 .

Then, for k = 15,

A−1k =



162
3 −31

3 0 0 −31
3 0

−31
3 162

3 0 0 −31
3 0

0 0 15 0 0 0
0 0 0 20 0 −10
−31

3 −31
3 0 0 162

3 0
0 0 0 −10 0 20

 .

This matrix is used in place of Ik in the MME. Everything else in the MME is
the same as before. However, this one little change, accounting for relationships
among bulls, has an effect of the solutions and ETAs. The new results are given
in Table 9.4.

Notice that the HYS estimates are very similar to those from the previous
model. The estimate of the difference between genetic group 1 and genetic group
2, however, is smaller by 88 kg. This happened in real life in the Northeast AI
Sire Comparison as well only much more drastic. Many genetic group differences
became almost zero. After some contemplation, the estimated differences were
now a reflection of differences in selection differentials among the dams of AI
bulls. All AI studs were buying bulls from the same herds and types of cows so
that there were small differences remaining. Additive genetic relationships were
accounting for many of the prior differences between AI studs and years of birth.

Note also that the solutions for sires 1, 2, and 5 are more similar than they
were in the previous model, due to the fact that they are now considered to be
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Table 9.4: Solutions to MME for example data to sire model using sire-MGS
relationships

HYS estimate Group estimate Sire estimate
1 5874 1 -211 1 -308
2 6832 2 0 2 -187
3 7131 3 305
4 6263 4 209
5 6729 5 -304
6 7190 6 133
7 6438
8 6673
9 7218

half-sibs. Also sires 4 and 6 are more similar. The residual variance is given by

σ̂2
e = (y′y − b̂′X′y − û′Z′y)/(N − r(X))

For this example, σ̂2
e = 163, 762.9. Notice that the estimate is smaller than

for the model without sire-MGS relationships. This indicates that sire-MGS rela-
tionships are helping to provide more accurate sire solutions, and therefore, more
of the variation is being explained with relationships present. Presumably, the
more complete the relationships are, then the solutions should be more accurate.

After this model was implemented, then concerns about errors in pedigrees
rose in priority, and many errors were found. Parentage checks were used by breed
associations to verify parents for registration of progeny, but these checks were
random and sporadic, except for young bulls going into AI service in which all
had to be tested. Thus, errors were present in all pedigrees with estimates from
5 to 12% of all registrations.

Sire ETAs are created as before, as the sum of genetic group and sire
solutions, and standard errors of prediction are calculated in the same way using
the inverse elements of the coefficient matrix of the MME.

At first glance the SEP in the Table 9.5, appear larger than in the previous
section. However, the SEP in each table are calculated assuming that the model
used in the analysis was the true, correct model. In the first case, that means
bulls were not related was the true state of nature. If not true, then the SEP
would need to be re-calculated under the true state of nature, which would make
them larger than the values in the Table 9.5. Similarly, when bulls were assumed
to be related, then SEP were calculated assuming that this was the true state of
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Table 9.5: ETA and SEP for 6 example sires, using sire-MGS relationships

Sire ETA SEP
1 -519 147
2 -398 130
3 94 130
4 209 96
5 -304 93
6 133 94

nature.

9.3 Random HYS

If Henderson had left HYS effects as a random factor in the model, then
another factor to account for time trends would have been needed. The model
would be

yijklm = Y Si +HY Sij + gk + skl + eijklm,

where

yijklm was a first lactation production yield of the mth daughter of the lth sire in
the ijth herd-year-season of calving,

Y Si was a fixed, year-season of calving effect,

HY Sij was a random, herd within year-season of calving effect,

gk was a fixed, genetic group of sire effect,

skl was a random, sire transmitting ability, and

eijklm was a random residual effect (including dam and Mendelian sampling ef-
fects as well as temporary environment).

The expected values of HY Sij , skl and eijklm were all zero, and

V ar(HY Sij) = σ2
e/6.5,

V ar(skl) = σ2
e/15.0,

V ar(eijklm) = σ2
e .
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The residual variance was assumed constant for all daughters and all herd-
year-seasons. Sires were assumed to be related, as in the previous section. The
same A matrix applies to this section.

In matrix notation, the model is

y = Xysys + Xgg + Zhh + Zss + e.

Thus,

X = (Xys Xg)

Z = (Zh Zs)

b =

(
ys
g

)
u =

(
h
s

)
G =

(
Iσ2
h 0

0 Aσ2
s

)
R = Iσ2

e

The MME are, after multiply both sides of the MME by σ2
e ,


X′ysXys X′ysXg X′ysZh X′ysZs

X′gXys X′gXg X′gZh X′gZs

Z′hXys Z′hXg Z′hZh + I(6.5) Z′hZs

Z′sXys Z′sXg Z′sZh Z′sZs + A−1(15)




ŷs
ĝ

ĥ
ŝ

 =


X′ysy
X′gy
Z′hy
Z′sy

 .

The order of these equations, for the example data, are (3 + 2 + 9 + 6) or 20 and
the rank of the equations is 19.
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Table 9.6: Solutions to MME for example data to sire model using sire-MGS
relationships and random HYS effects

YS estimate Group estimate HYS estimate Sire estimate
1 6181 1 -193 1 -184 1 -323
2 6732 2 0 2 55 2 -193
3 7165 3 -26 3 315

4 45 4 226
5 -9 5 -323
6 6 6 141
7 139
8 -46
9 20

ETA are formed by adding genetic group and sire solutions, as before
(Table 9.6). Note that the genetic group difference is smaller yet compared to
the previous two sections. The residual variance estimate was 160, 443.6 which is
smaller than the previous sections. Thus, having HYS as random and adding the
YS fixed effect to account for time trends, the resulting model accounts for more
variation. The ETA and their SEP (Table 9.7), assuming this model is the true
state of nature, are

Table 9.7: ETA and SEP for 6 example sires, using sire-MGS relationships, and
random HYS effects

Sire ETA SEP
1 -516 147
2 -386 130
3 122 128
4 226 95
5 -323 92
6 141 93
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9.4 Maternal Grandsire Model

An assumption of the Sire Model was that sires were randomly mated
to dams. However, the differential prices of proven versus unproven bull semen
often meant that high priced bulls were mated to higher quality dams. Quaas et
al. (1979) proposed the Maternal Grandsire Model to partially account for this
problem. Computing restrictions still kept scientists from using an Animal Model
in 1979. Animal models were not feasible for another 10 years.

The model would be

yijkhmn = HY Si + gj + sjk +
1

2
(gh + shm) + eijkhmn,

where

yijkhmn was a first lactation production yield of the nth daughter of the jkth sire
in the ith herd-year-season of calving,

HY Si was a fixed, herd within year-season of calving effect,

gj was a fixed, genetic group of sire effect,

sjk was a random, sire transmitting ability,

gh was a fixed, genetic group of sire effect (for the maternal grandsire),

shm was a random, sire transmitting ability (for the maternal grandsire), and

eijkhmn was a random residual effect (including dam and Mendelian sampling
effects as well as temporary environment).

The expected values of (sjk, shm) and eijkhmn were all zero, and

V ar(skl) = σ2
e/15.0,

V ar(eijklm) = σ2
e .
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Assume again that the additive relationships were

A =



1 .25 0 0 .25 0
.25 1 0 0 .25 0
0 0 1 0 0 0
0 0 0 1 0 .50
.25 .25 0 0 1 0
0 0 0 .50 0 1

 .

The residual variance was assumed constant for all daughters and all herd-
year-seasons.

9.4.1 Assumptions

Besides the assumptions for the usual Sire Model, other assumptions were

• The sire of the dams (MGS) were assumed known for all cows with lactation
records.

• The daughters of the MGS which were dams (mates) to the sires were as-
sumed to be a random sample of daughters of that MGS.

• Dams were still assumed to have only one progeny each.

By accounting for the MGS, some genetic level of the dam was assumed.
Unfortunately, the daughters of a bull which later became dams of other cows
were slightly selected, especially if the dam was beginning her second or later
lactation. The poorer daughters would have been culled after their first lactations.
Depending on the bull, the number of daughters culled would vary.

When MGS were not known, then the model reverted back to the Sire
Model for those cows, but the residual variance was assumed to be larger than
for the MGS model. The variances for the MGS model were

σ2
y = σ2

s +
1

4
σ2
s + σ2

E

and for cows with unknown MGS,

σ2
y = σ2

s + (
1

4
σ2
s + σ2

E)

= σ2
s + σ2

e
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If we let σ2
E = 1, then σ2

e = 1.01667. The MME require the ratio k = σ2
E/σ

2
s or

15.25.

In matrix notation, the model is

y = Xhh + Xgg + Zss + e.

Thus,

X = (Xh Xg)

Z = Zs

b =

(
h
g

)
u = s

G = Aσ2
s

R = Iσ2
E

In the MGS model, Xg and Zs now contain two non-zero elements per row rather
than one. Suppose there are five genetic groups and the sire of a cow belongs to
group 4, and the MGS belongs to group 2, then the row of Xg for this cow would
appear as (

0 .5 0 1 0
)

Similarly, the row of Zs would have a 1 in the location of the sire and .5 in the
column for the MGS. Usually the sire and MGS would belong to different genetic
groups, and usually the sire and MGS would be two distinct individuals, otherwise
the 1 and .5 would be combined for the same genetic group column or the same
sire column.

In general, the MGS model increased the number of sires that needed to
be evaluated. Some of the MGS were natural service bulls, and many were older
sires the pre-dated the first sires with progeny in the data.

9.4.2 Numerical Example

The previous example data do not have any MGS identified, and therefore
can not be used to illustrate the MGS model. Instead, consider the small example
in the table 9.8.
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Table 9.8: MGS Model Example Data

Cow Sire MGS
Group Sire Group MGS HYS Yield,kg

1 2 4 1 1 1 6062
2 2 4 1 2 1 6516
3 2 5 1 2 1 5325
4 2 6 1 3 2 7535
5 1 1 1 3 2 6183
6 1 2 - - 2 7223
7 2 6 2 4 2 7466

The components of the model are

y =



6062
6516
5325
7535
6183
7223
7466


, Xh =



1 0
1 0
1 0
0 1
0 1
0 1
0 1


, Xg =



.5 1

.5 1

.5 1

.5 1
1.5 0
1 0
0 1.5


,

and

Zs =



.5 0 0 1 0 0
0 .5 0 1 0 0
0 .5 0 0 1 0
0 0 .5 0 0 1
1 0 .5 0 0 0
0 1 0 0 0 0
0 0 0 .5 0 1


.

The residual matrix is scaled, and is a diagonal matrix,

R = diag( 1 1 1 1 1 1.01667 1 )

The one element is different from one because the MGS for cow 6 was unknown.

The resulting MME were of order 10 = (2 HYS + 2 genetic groups + 6
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sires). The solutions were (Table 9.9)

Table 9.9: Solutions to MGS MME

Genetic
HYS estimate groups estimate Sire estimate
1 6363 1 -801 1 -22
2 7695 2 0 2 4

3 -2
4 30
5 -40
6 14

Thus, the evaluation of a bull consists of both his daughters and his grand-
daughters. The ETA would be constructed in the same manner by adding the
genetic group solutions to the sire solutions. Sires 1, 2, and 3 belong to genetic
group 1, and therefore, their ETA would be -823, -797, and -803, respectively.
However, the estimate of the group difference has a very high standard error be-
cause group 1 sires had only 2 daughter records. Sires 4, 5, and 6 have ETA equal
to the sire solutions because the solution for genetic group 2 was restricted to be
zero.

When the MGS was applied to real data at Cornell University, the change
in sire ETA was much greater than anticipated. This was apparently due to the
invalid assumption that dams were not a random group of daughters of their
sires. Those that became dams were the result of culling. Thus, MGS effects were
inflated above their complete progeny level. This would cause the sire solutions
to be adjusted upwards because the genetic level of the dams would be over-rated.
The MGS model was a failure for production traits, and should only be used if
daughters of MGS are random samples of all daughters of each MGS.

9.5 All Lactations

Another criticism of the Northeast AI Sire Comparison was that it did
not include later lactations of cows. Thus, sires were not being estimated as
accurately, and sires were being chosen for early first lactation yields rather than
lifetime production. Ufford et al. (1979) modified the sire model so that all
lactations of each cow could be included. To do so, cows had to be nested within
sires (which they always were) and nested within herds (which was not always
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true). Cows which changed herds, only the records in the herd in which the
first lactation was made were kept. Cows were assumed to be unrelated between
herds, which was also not true. These assumptions allowed the cow equations to
be absorbed into the HYS and sire equations. The model equation was

yijkhmn = HY Sij + gk + skh + sHikh + cikhm + eijkhmn

where

yijkhm is the nth record of the mth cow of the jkth sire in the ith herd and jth

year-season;

Hij is the jth year-season within the ith herd, fixed;

gk is the kth genetic group for sires, fixed;

skh is a sire transmitting ability, random;

sHijkh is a sire by herd interaction (common environment effect among daughters
of the same sire in one herd), random;

cikhm is a cow within sire effect (includes dam’s contribution to that daughter
plus permanent environmental effect), nexted within herd and within sire,
random;

eijkhmn is a residual effect peculiar to each lactation record, random.

In matrix notation, the model is

y = Xhh + Xgg + Zss + Zshsh + Zcc + e.

Thus,

X = (Xh Xg)

Z = (Zs Zsh Zc)

b =

(
h
g

)

u =

 s
sh
c


G =

 Aσ2
s 0 0

0 Iσ2
sh 0

0 0 Iσ2
c


R = Iσ2

e
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The residual variance was assumed constant across lactation records and across
herds. The assumed variance ratios were

ks = σ2
e/σ

2
s = 8.33

ksh = σ2
e/σ

2
sh = 3.57

kc = σ2
e/σ

2
c = 1.67

The equations for cows were absorbed into the other equations, then sire
by herd interactions were absorbed in HYS, groups, and sire equations. Then HYS
equations were absorbed into groups and sire equations. Thus, the solutions for
cows, sire by herd interactions, and HYS were never obtained explicitly. These
were considered to be nuisance parameters. One needed to account for cows,
number of records and distribution of records, and needed to account for sire by
herd interactions, and for the level of herdmates (contemporaries) within herd-
year-seasons, but the actual values of those effects were forfeited. This was the
only computational strategy feasible at that point in time with the computer
hardware available, and even this approach took a long time to compute.

No numerical example is given for this model.

9.6 References

GIANOLA, D. , Im, S., Fernando, R.L. 1988. Prediction of breeding values
under Henderson’s selection model: A revisitation. J. Dairy Sci. 71:2790-
2798.

HENDERSON, C. R. 1975. Best linear unbiased estimation and prediction
under a selection model. Biometrics 31:423-448.

HENDERSON, C. R. 1975. Inverse of a matrix of relationships due to sires
and maternal grandsires. J. Dairy Sci. 58:1917-1921.

QUAAS, R. L. , R. W. EVERETT, A. C. McCLINTOCK. 1979. Maternal
grandsire model fo dairy sire evaluation. J. Dairy Sci. 62:1648-1654.

QUAAS, R. L. , 1980. Personam Communication

THOMPSON, R. 1979. Sire evaluation. Biometrics 35:339.

UFFORD, G. R. , C. R. HENDERSON, L. D. VAN VLECK. 1979. Computing
algorithms for sire evaluation with all lactation records and natural service
sires. J. Dairy Sci. 62:511-513.



122 CHAPTER 9. SIRE MODELS

UFFORD, G. R. , C. R. HENDERSON, J. F. KEOWN, L. D. VAN VLECK.
1979. Accuracy of first lactation versus all lactation sire evaluations by best
linear unbiased prediction. J. Dairy Sci. 62:603-612.



Chapter 10

Animal Models

HORIA GROSU
PASCAL A. OLTENACU
LARRY SCHAEFFER

10.1 Microcomputers

The first official microcomputer, the Datapoint 2200, was introduced in
1970. People were beginning to think about having their own computing power
under their control, but the cost of the machines was too great. The first gen-
eration of microcomputers lasted from 1971 to 1976, and mostly their usage was
limited to games. Monitors were very small, and the computers were used mostly
for games because of the small amount of Random Access Memory (RAM). In
essence they were just large calculators.

The second generation of microcomputers started in 1977 and machines
now had BASIC as a programming language. In 1979 Apple II was made, followed
by Atari and Commodore in 1980. The Microsoft Disk Operating System (MS-
DOS) became available in 1980 and was sold with IBM PC-like machines. The
advances in microprocessors was rapid and each new machine had more RAM. By
1989 the Macintosh SE/30 had a 386 processor, 4 MB of RAM, and an 80 MB
hard disk. The cost of personal computing was coming down, but was still high.
People wanted one, but were afraid that it would be obsolete in a year.

By 1989, however, computer hardware was faster and had more memory
than ever before. The possibility of using animal models for genetic evaluations
was finally here.

123
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10.2 Basic Animal Model

In a sire model, the focus was on the sire, and data were on progeny of
that sire. By assuming sires were randomly mated to dams, dams were unrelated
to each other, and that dams had only one progeny each, then sire models gave
a good prediction of the sire. However, the assumptions about random matings
became less valid over time. Herds contained cow families of which the producers
were proud, and therefore assuming dams were unrelated was also invalid. Dams
had several female progeny and this could not be ignored. Sires were related
through a sire-MGS relationship matrix which did not account for inbreeding.

With an animal model, the focus is on the cow, and data are on the cows.
The animal effect (or cow effect) could be written as

ai = .5 as + .5 ad + Mi

where as is the breeding value of the sire, ad is the breeding value of the dam,
and Mi is the Mendelian sampling effect, which accounts for the specific alleles
inherited by the animal from its parents. Animals are related through sires and
dams, and inbreeding can be included using the algorithm of Meuwissen and Luo
(1992). The additive genetic relationship matrix, A, accounts for every specific
mating of sires to dams, and it accounts for multiple progeny (male or female) of
each parent, and it can account for increases in inbreeding coefficients.

In writing an animal model we must consider the environmental and ge-
netic factors that would influence the cow during the making of its record(s). In
a dairy cattle context, a basic animal model for single milk production records
per cow would be

yijklm = AMGi + YMj +HY Sk + f(gl)m + am + eijklm

where

yijklm is a first lactation 305-d yield record of cowm, adjusted for lactation length
and number of times milked per day;

AMGi is a fixed age-month(AM) of calving subclass within a five-year period by
region of country group(G), recognizing that differences between ages can
change over time due to genetics and nutrition (environment), and differ
between regions;

YMj is a fixed year-month of calving, which can be partitioned according to
regions of the country to account for drastic environmental differences;

HY Sk is a random herd-year-season of calving effect, or contemporary group;
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f(gl)m is a function of phantom group effects for animal m;

am is a random additive genetic value of an animal; and

eijklm is a random residual effect.

10.2.1 Lactation Records

In the past, records were pre-adjusted for age and month of calving, lacta-
tion length, and number of times milked per day. Now it was possible to include
these factors in the model and to estimate them simultaneously with the genetic
values. Instead of re-estimating adjustment factors every 5 to 10 years, they were
re-estimated every time genetic evaluations were calculated.

Adjustment factors could be either additive (adding or subtracting values
from 305-d yields) or multiplicative (multiplying 305-d yields by constants to
increase or decrease them). Because production generally continued to increase
over time, 305-d yields were larger and larger values resulting in more variation.
Thus, multiplicative factors were thought to be better than additive. Including
age effects in the model implied additive adjustments were being applied. Thus,
AMGi was put into the models to allow age-month differences to change with
time and remain additive. By making further groups to account for differences in
regions of the country, the age-month adjustments could be more accurate than
using one set of adjustments for all years and regions of the country.

Multiplicative adjustment factors were still needed for extending incom-
plete lactations to a 305-d basis. Only records beyond 90 to 120-d in milk were
extended (depending on the country). The goal was to include every possible
daughter, especially for young sires, so that young bulls got their first proof (ETA
or EBV) as soon as possible. Multiplicative factors were also used for adjusting
for number of times milked per day. Extension factors also had to be re-estimated
every 5 to 10 years.

In North America, Dairy Herd Improvement Associations offered different
recording services to producers. The best program was where a supervisor visited
each herd about once a month to weigh the morning and evening milk yields and
to take samples for fat and protein content analyses at a central lab. Another pro-
gram was an alternating AM-PM program in which the supervisor only weighed
and collected samples from one milking per day, alternating between morning and
evening milkings between herd visits. Estimating 24-h milk weights then required
adjustment factors too. Finally there was an Owner-Sampler program, in which
producers recorded their own weights and sent in milk samples on a regular basis.
Owner-Sampler records were considered to be the least accurate milk recording
program, and for many years a debate carried on about whether Owner-Sampler
records should or should not be included in genetic evaluations. Eventually, they
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were allowed into genetic evaluation, but with larger residual variances and hence,
less weight in the MME.

Milk recording programs were carried out by governments, by breed as-
sociations, by private cooperatives, or by organizations that did progeny testing,
AI, milk recording, and genetic evaluations - depending on the country. No mat-
ter what the organization structure was in a country, cooperation between breed
registration (pedigrees), milk recording, AI, genetic evaluation and government
had to exist. Otherwise the breeding program in a country could suffer. Students
of Lush that returned to their homelands after graduate training made sure that
their respective dairy industries collaborated.

10.2.2 YM and HYS

For the majority of implementations of an animal model for genetic evalu-
ation, the HYS effects have been treated as fixed effects, as a carry-over practice
from sire models. No one seemed to critically question this aspect of the model.
Henderson originally made HYS fixed to avoid an association between sire true
breeding values and the true levels of each HYS. However, in an animal model,
that association is not so critical, and therefore, HYS should have been a ran-
dom factor. If HYS are random, then a fixed factor that accounts for phenotypic
trends, such as Year-Month of calving effect, needs to be in the model. If YM
effects are omitted when HYS are random, then estimated breeding values can be
severely biased.

For a large country, like the USA, YM effects should be separated ac-
cording to regions of the country (e.g. Southeast, Southwest, West Coast, West,
Midwest, East Coast, and Northeast) which clearly delineate environmentally dif-
ferent areas. In Europe countries may have mountainous regions or regions close
to the Mediterranean, or areas below sea level.

The HYS effects are assumed to be samples from a large population with
mean zero and common variance, σ2

h, and are independent of each other and
independent of levels of other random factors in the model.

10.2.3 Animal Effects

The animal additive genetic effect (individual cow effect, to Henderson) is
based upon an infinitesimal genetic model. That is, there are assumed to be an
infinitely large number of genes that affect a given trait, like milk production, and
each of these genes have a small and fairly equal sized effect on the overall trait.
The am element of the model accounts for the sum of all of these gene effects over
the entire genome. All interactions among gene loci, and all dominance effects
are ignored in the animal model. At least, the non-additive effects are assumed
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to be inconsequential. Only the genetics that are passed from parent to offspring
are considered.

The animal model requires that complete pedigrees are known for all anim-
als with records. A base population is assumed, in which all the individuals were
non-selected, non-inbred, and randomly mating. The mean of the base population
is zero, and the additive genetic variance is σ2

a. Thus, the covariance structure is
Aσ2

a. Fortunately, we do not require having A created and stored anywhere. The
A matrix is usually 95% full of non-zero numbers, and for anything over 50,000
animals the capacity to store this matrix in memory in a computer becomes
stretched to the limit. On the other hand, A−1, is fairly sparse, and the elements
of the matrix do not need to be stored, but can be generated when needed us-
ing Henderson’s rules (1976). After advances in computer hardware, Henderson’s
method of inverting A was a key factor in making the implementation of animal
models possible.

10.2.4 Phantom Parent Groups

The base population is assumed to be large with individuals mating ran-
domly, and therefore, they would be non-inbred. All other animals have parents
and can be traced through the pedigree to this base population. In real life, how-
ever, herds go on and off milk recording and in the process create gaps in pedigrees
within the herd. Also, cows are transferred from non-milk recorded herds to milk
recorded herds, and cows appear “out of nowhere” with unknown parents. Cows
are also exchanged between countries (USA and Canada, for example) and their
parents can not be traced to the base population in the importing country.

Because animals with unknown parents can not be traced back to the base
population, then the unknown parents have to be assigned to phantom parent
groups (Robinson 1986, Westell et al. 1988). Phantom parent groups are based
upon whether the animal is a male or female, and if the parent is a sire or dam,
which gives four pathways of selection. There are sires of cows (SC), sires of bulls
(SB), dams of cows (DC), and dams of bulls (DB). Phantom groups are also based
upon the year of birth of the animal. Thus, a cow born in 1992 with an unknown
dam, the unknown dam is assigned to DC-92, i.e. dams of cows pathway for
progeny born in 1992.

Thus, every animal has either a real parent ID or an unknown parent re-
placed by a phantom parent group ID. The only ‘animals’ with unknown parents
are the phantom parent group IDs. If gl represents one of the phantom par-
ent groups, then every animal has a function that shows what fraction of each
phantom parent group makes up part of the animal’s true breeding value. Sup-
pose we have three phantom parent groups, g1, g2, and g3, and animal A has an
unknown sire assigned to group 1, and an unknown dam assigned to group 2. The



128 CHAPTER 10. ANIMAL MODELS

function is then
(0.5 g1 + 0.5 g2 + 0 g3).

Animal B might have function

(0.5 g1 + 0 g2 + 0.5 g3).

Then if animal C is a progeny of A and B, then its function is the average of the
two parent functions, giving

(0.5 g1 + 0.25 g2 + 0.25 g3).

After many generations these functions can become very complicated. Fortunately
we do not need to specify them for each animal, as will be shown later through
Quaas (1988).

The animal’s estimated breeding value is then the sum of f(ĝl)m and âm.
Most implementations of animal models utilize phantom parent groups.

10.2.5 Relationship Matrix Inverse

Looking at Henderson’s rules for writing A−1, every animal has its parents
(or phantom parent group) identified, and there are non-zero coefficients between
the animal, its sire, and its dam. A row of A−1 can be written as

biai − .5bias − .5biad +
∑
j

(−.5bjaj + .25bjai + .25bjam)

where bi = 1/δi, δi is the amount of Mendelian sampling variance remaining, as
is the additive genetic effect of the sire (or sire phantom group) of animal i, ad is
the additive genetic effect of the dam (or dam phantom group) of animal i, am is
the additive genetic effect of the mate of animal i that produced progeny j, and
aj is the additive genetic effect of progeny j from animals i and m.

The expression can be re-arranged as

(bi +
∑
j

.25bj)ai − .5bi(as + ad)−
∑
j

.5bj(aj − .5am)

which can be seen as

• a part for the animal, (bi +
∑

j .25bj)ai,

• a second part for the parent average, −.5bi(as + ad), and

• a third part for the sum of contributions from its progeny, adjusted for the
mates, −

∑
j .5bj(aj − .5am).
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Progeny groups are assumed to be random samples of progeny. There has
been no pre-selection of progeny before or after birth to be included as part of the
progeny group. Until genomics entered the picture, this assumption has usually
been close to true.

The animal model, through the relationship matrix, analyzed by BLUP
through MME, provides estimated breeding values for all cows, all sires, and all
dams, simultaneously, and accounting for all identified additive relationships.

10.2.6 Residual Effects

The residual effects are assumed to be sampled from one population with
a mean of zero and variance of σ2

e . During the 1990’s this assumption was ques-
tioned (Meuwissen et al. 1996), and the consensus was that there was a separate
population of residual effects for each herd, with zero means, but with different
variances. Thus, the concept of heterogeneous variances arose. This also raised
the question that possibly the additive genetic variance was also different between
herds, and therefore, heritability varied amongst herds.

Many countries now have adjustments for heterogeneous residual variances
among herds for the production traits. Meuwissen et al. (1996) provided a sound
theoretical approach for solving the problem, although most countries opted for
simpler methods.

10.3 BLUP and MME

Let the animal model be written in matrix notation as

y = Xb + ZQg + Za + Wh + e,

where

y is the vector of single records per animal,

b is the vector of age-month-region group effects, and a vector for year-month-
region effects,

a is the vector of animal additive genetic effects,

h is the vector of herd-year-season effects,

Z is the matrix that relates animals to their observations,

g is the vector of phantom parent genetic group effects, and

Q is the matrix of functions of the phantom groups that relate to each animal,



130 CHAPTER 10. ANIMAL MODELS

X,W are design matrices relating fixed effects and herd-year-season effects to
the observation vector, and

e is the vector of residual effects.

The expectations of the random vectors are null vectors, and the variances are

V ar

 a
h
e

 =

 Aσ2
a 0 0

0 Iσ2
h 0

0 0 Iσ2
e

 .

The Estimated Breeding Value, EBV, of an animal is equal to

Vector of EBVs = Qĝ + â.

Quaas and Pollak (1981) showed that the MME with phantom parent
grouping simplify significantly. The MME are

X′X X′ZQ X′Z X′W
Q′Z′X Q′Z′ZQ Q′Z′Z Q′Z′W
Z′X Z′ZQ Z′Z + A−1α Z′W
W′X W′ZQ W′Z W′W + Iαh




b̂
ĝ
â

ĥ

 =


X′y
Q′Z′y
Z′y
W′y

 .

Notice that Q′ times the third row subtracted from the second row gives

Q′A−1âα = 0.

Quaas and Pollak (1981) showed that Qĝ + â can be computed directly. Note
that 

b̂
ĝ
â

ĥ

 =


I 0 0 0
0 I 0 0
0 −Q I 0
0 0 0 I




I 0 0 0
0 I 0 0
0 Q I 0
0 0 0 I




b̂
ĝ
â

ĥ



=


I 0 0 0
0 I 0 0
0 −Q I 0
0 0 0 I




b̂
ĝ

Qĝ + â

ĥ

 .

Substituting this equality into the left hand side (LHS) of the MME gives


X′X 0 X′Z X′W

Q′Z′X 0 Q′Z′Z Q′Z′W
Z′X −A−1Qα Z′Z+A−1α Z′W
W′X 0 W′Z W′W + Iαh




b̂
ĝ

Qĝ + â

ĥ

 =


X′y

Q′Z′y
Z′y
W′y

 .
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To make the equations symmetric again, both sides of the above equations must
be premultiplied by 

I 0 0 0
0 I −Q′ 0
0 0 I 0
0 0 0 I

 .

This gives the following system of equations as


X′X 0 X′Z X′W
0 Q′A−1Qα −Q′A−1α 0

Z′X −A−1Qα Z′Z+A−1α Z′W
W′X 0 W′Z W′W + Iαh




b̂
ĝ

Qĝ + â

ĥ

 =


X′y
0

Z′y
W′y

 . (10.1)

Quaas (1988) examined the structure of Q and the inverse of A under phantom
parent grouping and noticed that Q′A−1Q and −Q′A−1 had properties that fol-
lowed the rules of Henderson (1976) for forming the elements of the inverse of A.
Thus, the elements of A−1 and Q′A−1Q and −Q′A−1 can be created by a simple
modification of Henderson’s rules. Use δi as computed earlier, (i.e. δi = B−1

ii for
Bii being the fraction of Mendelian sampling variation remaining), and let i refer
to the individual animal, let s and d refer to either the parent or the phantom
parent group if either is missing, then the rules are

Constant to Add Location in Matrix
δi (i, i)
−δi/2 (i, s),(s, i),(i, d), and (d, i)
δi/4 (s, s),(d, d),(s, d), and (d, s)

Thus, Q′A−1Q and Q′A−1 can be created directly without explicitly form-
ing Q and without performing the multiplications times A−1. In essence, phantom
groups can almost be treated in the same manner as a real animal. The first step
would be to use the algorithm of Meuwissen and Luo (1992) to obtain the inbreed-
ing coefficients, Fi, of all the animals, and a Bii value for each animal, where

Bii = 0.5− 0.25(Fs + Fd)

for the case when both s, sire and d, dam are known, and Bii = 4/3 if one parent
is unknown, and Bii = 1 if both parents are unknown. The second step would be
to add in the phantom group identification, and let their Bii = 1. Then construct
the relationship matrix inverse using Henderson’s rules and the Bii values of each
animal or phantom group.
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10.4 Partitioning EBVs

Sometimes partitioning solutions to MME can be informative and helpful
to understanding MME. Take the equations for the animal EBVs from 10.1 which
are

Z′Xb̂−A−1Qαĝ + (Z′Z + A−1α)Q̂g + a + Z′Wĥ = Z′y

Re-arrange these to give

(Z′Z + A−1α)Q̂g + a = Z′y − Z′Xb̂− Z′Wĥ + A−1Qαĝ

If we consider just one animal, i, having a record, then

(Z′Z + A−1α)êbv −A−1Qαĝ = (1 + biα+
∑
j

.25bjα)êbvi

−.5biα(êbvs + êbvd)

−
∑
j

.5bjα(êbvj − .5êbvm)

and
Z′y − Z′Xb̂− Z′Wĥ = (yijklm − ÂMGi − Ŷ M j − ĤY Sk).

Combining results and expressing things in terms of the animal’s EBV,

êbvi = w1(yijklm − ÂMGi − Ŷ M j − ĤY Sk)
+w2(α.5bi(êbvs + êbvd))

+w3(
∑
j

.25bjα(êbvj − .5êbvm))

where

Di = (1 + biα+
∑
j

.25bjα)

w1 = 1/Di

w2 = (biα)/Di

w3 = (
∑
j

.25bjα)/Di

This shows that an EBV can be partitioned into a part due to the record on the
animal (if present), a part due to the parent average EBV, and a part due to the
sum of its progeny deviated from one-half their dam’s EBV. The weights, w1, w2,
and w3 depend on the amount of information and α in each part.
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Suppose an animal has its own record, both parents are known, and it has
2 progeny, with α = 1.5, then

Di = (1 + 2(1.5) + .25(1.5)(2 + 2)

= 5.5 so that
w1 = 0.1818

w2 = 0.5454

w3 = 0.2727

In this case the parent average plays a large part in this animal’s EBV.
Progeny are more important than the animal’s own record. If the animal

had 10 progeny (all with both parents known and non-inbred) then

Di = (1 + 2(1.5) + .25(1.5)(2 ∗ 10)

= 11.5

w1 = 0.0870

w2 = 0.2609

w3 = 0.6522

Now the progeny are carrying more weight in the animal’s EBV than its parents,
and the contribution of one record diminishes very quickly.

A higher heritability (lower α) also shifts the weights, for example let
α = 1.1, then

Di = (1 + 2(1.1) + .25(1.1)(2 ∗ 10)

= 8.7

w1 = 0.1149

w2 = 0.2529

w3 = 0.6322

which results in more weight back on the record, and a little less on the parent
average and on the progeny, but progeny are still the major contributor.

The animal model MME produce the appropriate weights on each source
of information. Partitioning is not usually calculated, but is used to improve



134 CHAPTER 10. ANIMAL MODELS

understanding.

10.5 Accuracies

The residual variance is estimated, as usual, as

σ2
e = (y′y − b̂′X′y − ̂(Qg + a)

′
Z′y − ĥ′W′y)/(N − r(X)).

Then if the MME coefficient matrix can be inverted, so that cii represents the
diagonal of the inverse for animal i, then the variance of prediction error Prediction
Error Variance (PEV) is given by

PEV = cii × σ2
e .

Accuracy is given by the squared correlation between the EBV and the true
breeding value,

r2
a,â = Cov(a, â)/V ar(a)

where
Cov(a, â) = V ar(a)− PEV = [(1 + Fi)− ciiα]σ2

a

Then
r2
a,â = [(1 + Fi)− ciiα]/[1 + Fi].

If the animal is not inbred, then

r2
a,â = 1 − ciiα.

Harris and Johnson (1998), Meyer (1987), and others have developed approxim-
ate methods to calculate accuracies from animal models. Meyer (1987) uses an
“absorption”-like strategy, but not everything gets “absorbed” and so the approx-
imation does not work well on animals with lots of progeny or animals with few
progeny. A selection index procedure incorporating

• the number of records on the animal,

• the number of progeny of the animal,

• the number of progeny of the sire of the animal,

• the number of records on the dam of the animal, and

• the number of progeny of the dam of the animal,

seems to be a good approximation of r2
a,â. When using an animal model, there are

always too many animals being evaluated and thus, the inverse of the coefficient
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matrix of the MME is never practical to compute. Thus, one must find a good
approximation of either cii or r2

a,â. Unfortunately, there are many approximations
from which to choose.

10.6 Reduced Animal Model

In the early days of animal models, not everyone had adequate computing
power to set up and solve MME. Thus, the search for computational tricks to
reduce the number of equations to be solved was in play. Only animals that were
possible candidates for becoming parents of the next generation needed to be
evaluated. Eliminating other animals from the data would cause bias by creating
a data set with only selected animals, and so the trick was finding a way to use
their records without estimating their breeding value. Pollak and Quaas (1980)
came up with the reduced animal model or RAM to cover this situation. Animals
that would never have any progeny had their true breeding value in the model
replaced with

ai = .5as + .5ad +Mi

and the Mi was combined with the residual variance to give a larger residual
variance for that animal’s record. The resulting MME only had equations for
animals that either were parents or would eventually be parents. This trick was
especially useful for species of animals with high reproductive rates like pigs,
poultry, rabbits, fish, beef cattle, or sheep. In dairy cattle, the reproductive
rate was not great enough to make a great savings on the size of MME to be
solved. This did not matter because main memory in computers, and disk storage
capacity grew so quickly during the 1990’s that such a trick was not necessary for
very long. Consider a very simple animal model with periods as a fixed factor and
one observation per animal, as in the table 10.1. There are no phantom groups
or random contemporary groups in this example. The purpose is to present an
example of the reduced animal model.

10.6.1 Usual Animal Model Analysis

Assume that the ratio of residual to additive genetic variances is α = 2.
The MME for this data would be of order 11 (nine animals and two periods). The
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Table 10.1: Example Data For Reduced Animal Model

Animal Sire Dam Period Observation
5 1 3 2 250
6 1 3 2 198
7 2 4 2 245
8 2 4 2 260
9 2 4 2 235
4 - - 1 255
3 - - 1 200
2 - - 1 225

left hand sides and right hand sides of the MME are:

3 0 0 1 1 1 0 0 0 0 0
0 5 0 0 0 0 1 1 1 1 1
0 0 4 0 2 0 −2 −2 0 0 0
1 0 0 6 0 3 0 0 −2 −2 −2
1 0 2 0 5 0 −2 −2 0 0 0
1 0 0 3 0 6 0 0 −2 −2 −2
0 1 −2 0 −2 0 5 0 0 0 0
0 1 −2 0 −2 0 0 5 0 0 0
0 1 0 −2 0 −2 0 0 5 0 0
0 1 0 −2 0 −2 0 0 0 5 0
0 1 0 −2 0 −2 0 0 0 0 5


,



680
1188

0
225
200
255
250
198
245
260
235


and the solutions to these equations are:

b̂1
b̂2
â1
â2
â3
â4
â5
â6
â7
â8
â9


=



225.8641
236.3366
−2.4078

1.3172
−10.2265

11.3172
−2.3210
−12.7210

6.7864
9.7864
4.7864


.

10.6.2 Reduced AM

RAM results in fewer equations to be solved, but the solutions from RAM
are exactly the same as from the usual MME. In a typical animal model with a as
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the vector of additive genetic values of animals, there will be animals that have
had progeny, and there will be other animals that have not yet had progeny (and
some may never have progeny). Denote animals with progeny as ap, and those
without progeny as ao, so that

a′ =
(

a′p a′o
)
.

In terms of the example data,

a′p =
(
a1 a2 a3 a4

)
,

a′o =
(
a5 a6 a7 a8 a9

)
.

For any individual, i, the additive genetic value may be written as

ai = .5(as + ad) +Mi.

Therefore,
ao = Tap + m,

where T is a matrix that indicates the parents of each animal in ao, and m is the
vector of Mendelian sampling effects. Then

a =

(
ap
ao

)
=

(
I
T

)
ap +

(
0
m

)
,

and

V ar(a) = Aσ2
a

=

(
I
T

)
App

(
I T′

)
σ2
a +

(
0 0
0 B

)
σ2
a

where B is a diagonal matrix with diagonal elements equal to

bi = 0.5− .25(Fs + Fd),

when both parents are known, which is assumed to be true for these particular
animals.

V ar(ap) = Appσ
2
a.
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The animal model can now be written as

(
yp
yo

)
=
(

Xp

Xo

)
b +

(
Zp 0
0 Zo

)(
I
T

)
ap +

(
ep

eo + Zom

)
.

Note that the residual vector has two different types of residuals and that
the additive genetic values of animals without progeny have been replaced with
Tap. Because every individual has only one record, then Zo = I, but Zp may have
fewer rows than there are elements of ap because not all parents may have obser-
vations themselves. In the example data, animal 1 does not have an observation,
therefore,

Zp =

 0 1 0 0
0 0 1 0
0 0 0 1

 .

Consequently,

R = V ar

(
ep

eo + m

)
=

(
Iσ2
e 0

0 Iσ2
e + Bσ2

a

)
=

(
I 0
0 Ro

)
σ2
e

The mixed model equations for the reduced animal model are

(
X′pXp + X′oR

−1
o Xo X′pZp + X′oR

−1
o T

Z′pXp + T′R−1
o Xo Z′pZp + T′R−1

o T + A−1
pp α

)(
b̂
âp

)

=
(

X′pyp + X′oR
−1
o yo

Z′pyp + T′R−1
o yo

)
.

Solutions for âo are derived from the following formulas.

âo = Tâp + m̂,
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where

m̂ = (Z′oZo + D−1α)−1(yo −Xob̂−Tâp).

Using the example data,

T =


.5 0 .5 0
.5 0 .5 0
0 .5 0 .5
0 .5 0 .5
0 .5 0 .5

 ,

and
B = diag

(
.5 .5 .5 .5 .5

)
,

then the MME with α = 2 are



3 0 0 1 1 1
0 4 .8 1.2 .8 1.2
0 .8 2.4 0 .4 0
1 1.2 0 3.6 0 .6
1 .8 .4 0 3.4 0
1 1.2 0 .6 0 3.6





b̂1
b̂2
â1

â2

â3

â4


=



680.
950.4
179.2
521.
379.2
551.


The solutions are as before, i.e.

b̂1 = 225.8641

b̂2 = 236.3366

â1 = -2.4078

â2 = 1.3172

â3 = -10.2265

â4 = 11.3172
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10.6.3 Backsolving for Omitted Animals

To compute âo, first calculate m̂ as:

(I + B−1α) =


5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5



yo =


250
198
245
260
235



Xob̂ =


0 1
0 1
0 1
0 1
0 1


(

225.8641
236.3366

)

Tâp =


−6.3172
−6.3172

6.3172
6.3172
6.3172


m̂ = (I + B−1α)−1(yo −Xob̂−Tâp)

=


3.9961
−6.4039
.4692

3.4692
−1.5308


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and

Tâp + m̂ =


−2.3211
−12.7211

6.7864
9.7864
4.7864

 .

10.7 Repeated Records Model

Cows can have several lactation records. The question is whether the suc-
cessive measures are records on the same genetic trait, or whether the successive
measures are different genetic traits, but with high genetic correlation. Assuming
the successive lactation records are repeated measures of the same trait, then a
repeatability animal model can be employed. Such a model was adopted by the
USDA in 1990 (Wiggans and VanRaden, 1991) and discussed by Wiggans (1988).
A repeatability model is similar to the single record animal model, but with the
addition of a permanent environmental effect for each animal making a lactation
record. The model is

yijklmn = PAMGi + PYMj +HY Sk + f(gl)m + am + pm + eijklmn

where

yijklm is the nth lactation 305-d yield record of cow m, adjusted for lactation
length and number of times milked per day;

PAMGi is a fixed parity-age-month(AM) of calving subclass within a five-year
period by region of country group(G), recognizing that differences between
ages can change over time due to genetics and nutrition (environment), and
differ between regions;

PYMj is a fixed parity-year-month (AM) of calving, which can be partitioned
according to regions of the country to account for drastic environmental
differences;

HY Sk is a random herd-year-season of calving effect, or contemporary group,
where contemporary groups could be split by first versus later lactations;

f(gl)m is a function of phantom group effects for animal m;

am is a random additive genetic value of an animal;

pm is a random permanent environmental (PE) value of an animal; and
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eijklm is a random residual effect.

A necessary requirement for this model is that every cow should have their first
lactation record included. This is so that culling of cows after first lactation can
be taken into account.

Age-month of calving effects are different depending on parity number.
The effects for a 36 month old cow calving for the first time are different from
those for a 36 month old cow calving for the second time. Similarly, trends for
year-months of calving will differ by parity number because yields tend to go up in
later parities. Contemporary groups should be split by first lactation cows versus
all others. This is because first lactation cows have lower yields, but also because
heifers are generally raised separately because they are not being milked during
their pregnancy. Once a cow calves, she is kept with the older cows.

Permanent environmental effects are non-genetic effects that each cow en-
counters during their lives that affect every lactation record they make. In com-
parison to an athlete, for example, the permanent environmental effects is the
training the athlete followed prior to becoming competitive. Did the athlete have
a good coach, did the athlete carry out the training appropriately, did the train-
ing have an adverse effect, or did the training allow the genetic potential to come
forward? Permanent environmental effects can be either good or bad, but they
have an effect on every performance. Traits are said to have a repeatability which
is

r =
σ2
a + σ2

p

σ2
y

where σ2
a is the additive genetic variance, σ2

p is the permanent environmental
variance from cow to cow, and σ2

y is the phenotypic variance of the trait. Repeat-
abilities go from 0 to 1, but because of the definition should always be greater
than the heritability of the trait.

If h is the vector of herd-year-season effects, a is the vector of animal
additive genetic effects, p is the vector of permanent environmental effects of
cows that made records, and e is the vector of residual effects, then the assumed
covariance matrix is

V ar


h
a
p
e

 =


Iσ2
h 0 0 0

0 Aσ2
a 0 0

0 0 Iσ2
p 0

0 0 0 Iσ2
e

 .

The design matrix for the animal additive genetic effects, Za, and the matrix for
permanent environmental effects, Zp, are not identity matrices. A column for an
animal has n ones corresponding to the records of that cow.
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10.7.1 Numerical Example

Table 10.2: Example for Repeated Records Model

Year 1 Year 2 Year 3
Animal Sire Dam y1jk y2jk y3jk

1 - -
2 - -
3 - -
4 - -
5 - -
6 - -
7 1 2 39 51 62
8 3 4 48 72
9 5 6 71 96

10 1 4 56 47
11 3 6 86
12 1 2 46

None of the animals are inbred (Table 10.2), so that the inverse of the
additive genetic relationship matrix is

A−1 =
1

2



5 2 0 1 0 0 −2 0 0 −2 0 −2
2 4 0 0 0 0 −2 0 0 0 0 −2
0 0 4 1 0 1 0 −2 0 0 −2 0
1 0 1 4 0 0 0 −2 0 −2 0 0
0 0 0 0 3 1 0 0 −2 0 0 0
0 0 1 0 1 4 0 0 −2 0 −2 0
−2 −2 0 0 0 0 4 0 0 0 0 0

0 0 −2 −2 0 0 0 4 0 0 0 0
0 0 0 0 −2 −2 0 0 4 0 0 0
−2 0 0 −2 0 0 0 0 0 4 0 0

0 0 −2 0 0 −2 0 0 0 0 4 0
−2 −2 0 0 0 0 0 0 0 0 0 4



.

Let
W =

[
X

(
0 Z

)
Z
]
,
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then

W′W =


X′X 0 X′Z X′Z

0 0 0 0
Z′X 0 Z′Z Z′Z
Z′X 0 Z′Z Z′Z

 , W′y =


X′y
0

Z′y
Z′y

 ,

and

Σ =


0 0 0 0
0 A00ka A0rka 0
0 Ar0ka Arrka 0
0 0 0 Ikp

 ,

where Aij are corresponding elements of the inverse of the additive genetic rela-
tionship matrix (given earlier) partitioned according to animals without and with
records. In this example, each submatrix is of order 6. Also,

ka = σ2
e/σ

2
a = 1.33333, andkp = σ2

e/σ
2
p = 3.

MME are therefore,

(W′W + Σ)β = W′y

(W′W + Σ)β =


X′X 0 X′Z X′Z

0 A00ka A0rka 0
Z′X Ar0ka Z′Z + Arrka Z′Z
Z′X 0 Z′Z Z′Z + Ikp




b̂
â0

âr
p̂

 .

Let a generalized inverse of the coefficient matrix be represented as

(W′W + Σ)− =

 − − −
− Caa −
− − Cpp

 ,

where Caa is of order 12 in this case, and Cpp is of order 6. The full HMME are
too large to present here as a whole, so parts of the matrix are given as follows.

X′X =

 3 0 0
0 4 0
0 0 4

 , X′y =

 158
225
291

 ,
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X′Z =

 1 1 1 0 0 0
1 1 0 1 0 1
1 0 1 1 1 0

 ,

Z′Z = diag(3 2 2 2 1 1),

and

Z′y =



152
120
167
103
86
46

 .

The solutions for animals are given in the table 10.3. Solutions for year effects
were

t̂1 = 50.0858,

t̂2 = 63.9612,

t̂3 = 72.0582.

Table 10.3: Solutions for Example Data

Animal â p̂

1 -7.9356
2 -4.4473
3 2.8573
4 -2.6039
5 5.0783
6 7.0512
7 -8.0551 -1.6566
8 1.0111 0.7861
9 11.1430 4.5140

10 -8.7580 -3.1007
11 6.9271 1.7537
12 -8.7750 -2.2965
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10.7.2 Cumulative Permanent Environments

Schaeffer (2011) presented a case for permanent environmental effects be-
ing cumulative in nature. Animals experience new environmental influences every
day of their lives. Thus, there would be permanent environmental effects that
would influence the first record of a cow, and during that lactation the cow would
be influenced by new effects which add on to those already present. Hence, each
record would have a different PE effect, but which would include the PE effect on
the previous record. This can be accommodated by allowing the design matrix
for permanent environmental effects to have more than one non zero element in
a row. For example, suppose a cow has four records, then the appropriate design
matrix for this cow would be

y1

y2

y3

y4

 , Zp =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 .

Thus, there would be 4 PE effects to estimate for that animal. The last
row of Zp says that y4 has 4 PE effects affecting it, the same three that affected
the previous record, y3, plus a new one.

Questions that remain unanswered are whether each PE effect is coming
from the same population of PE effects, or different populations. If we assume
different populations, then the covariance matrix of the PE effects would be:

V ar


p1
p2
p3
p4

 =


σ2
p1 σ2

p1 σ2
p1 σ2

p1

σ2
p1 (σ2

p1 + σ2
p2) (σ2

p1 + σ2
p2) (σ2

p1 + σ2
p2)

σ2
p1 (σ2

p1 + σ2
p2) (σ2

p1 + σ2
p2 + σ2

p3) (σ2
p1 + σ2

p2 + σ2
p3)

σ2
p1 (σ2

p1 + σ2
p2) (σ2

p1 + σ2
p2 + σ2

p3) (σ2
p1 + σ2

p2 + σ2
p3 + σ2

p4)

 .

Possibly the size of these variances decrease as more records are made. Or
the variance of PE effects are the same, and therefore, PE variance increases with
record number.

The concept of cumulative PE effects is relatively new, and has not been
implemented into any genetic evaluation models. If such effects exist, then per-
haps each record should be considered a different trait, and then the PE effects
can be combined with the temporary environmental effects in a multiple trait
analysis.
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10.8 Heterogeneous Variances

The variability of production records in some herds was found to be much
greater or much lower than the average herd. The consequence of unequal herd
variances was that more animals would be selected from herds with greater vari-
ation. This was especially important in the selection of bull dams (Hill, 1984).
An attempt to solve the problem was to group herds by level of production and
to estimate variances within groups. However, a high herd average does not ne-
cessarily mean high variance. In fact, Winkelman and Schaeffer (1988) found no
relationship between herd means and herd variances. Also, within-herd resid-
ual and sire variances seemed to vary together so that heritability seemed to be
constant across herds. Usually, comparisons of herds were made using phenotypic
variances (Hill, 1984). Phenotypic variances are the sum of genetic, contemporary
group, and residual variances in most situations. Thus, variation could be in one
component or may be due to variation in all three components. The problem was
the estimation of these variances with enough accuracy to know if the differences
are real or are only due to random variability. Herds are not very large and cover
many years of data collection, so that estimation of within herd variances for ge-
netic merit and residual effects is problematic. Gianola et al. (1992) and Weigel
and Gianola (1992) proposed a Bayes method to estimate within herd variances.
Thus, within herd estimates were weighted towards an overall residual and sire
variances based on herd size using priors and hyperparameters known as degrees
of belief. Meuwissen et al. (1996) also proposed a method for simultaneously
estimating herd variances and breeding values using an autoregressive structure
within herds over years. The estimated autocorrelation was 0.984 so that herd-
year-season variances were similar within a herd, but between herds were more
different. Because heritability seemed to be constant, a simple approach was to
calculate phenotypic or residual variances within each contemporary group, call
it Sk, and let the average residual variance be V , then the sample variance was
regressed towards the average variance using

S∗k =

[
nk

nk + γ
(Sk − V )

]
+ V,

where γ had to be chosen appropriately, and nk was the number of records in that
herd-year-season. The smaller is nk, then the closer S∗k should be to V . If nk is
large, then the closer S∗k should be to Sk.
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10.8.1 Numerical Example

Assume a simple model,

yijk = Yi +HYij + ak + eijk

where

yijk is a production record on a cow,

Yi is a fixed year effect,

HYij is a random herd-year effect,

ak is a random animal additive genetic effect, and

eijk is a random residual effect assumed to have come from a different population
within each herd-year.

Animals are assumed to be traced to the same base population through the ped-
igrees, thus, there is no need to have phantom genetic groups in the model.

Table 10.4: Heterogeneous variances example data

Year HY cow sire dam protein,kg
1 1 14 1 5 230

1 15 1 6 310
1 16 2 7 260
1 17 2 8 250

1 2 18 1 9 280
2 19 3 10 320
2 20 3 11 340
2 21 4 12 270
2 22 4 13 240

2 3 23 2 5 250
3 24 3 6 290
3 25 4 7 220

2 4 26 1 8 290
4 27 2 9 310
4 28 3 10 300
4 29 4 11 210
4 30 1 12 220
4 31 2 13 320
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The ratio of the average residual variance to additive genetic variance is
α = 1.4. The example data are presented in the table 10.4.

To get starting values for the residual variances, use the phenotypic vari-
ances for each HY. The overall phenotypic variance of all 18 yields was 1574.183.
Below are the phenotypic variances for the 4 HY, their regressed values, and their
values relative to the overall phenotypic variance (Table 10.5). The regression
towards the overall variance used γ = 10.

Table 10.5: Within herd-year phenotypic variances

HY nk mean Sk S∗k S∗k/V

1 4 262.5 1158.33 1455.37 0.924523
2 5 290.0 1600.00 1582.79 1.005467
3 3 253.3 1233.33 1495.52 0.950033
4 6 275.0 2270.00 1835.11 1.165757

Instead of R being an identity matrix times a scalar constant, now it is a
block diagonal matrix,

R =


I4(0.9245) 0 0 0

0 I5(1.0055) 0 0
0 0 I3(0.9500) 0
0 0 0 I6(1.1658)

σ2
e

The ratio of σ2
e/σ

2
a is 1.4, and σ2

e is an average residual variance for all records.
R−1 goes into the MME, so that HY with larger variance are given less weight
in the equations. Also, the ratio σ2

e/σ
2
h = 4 was assumed. After the MME are

constructed and solved, then calculate the residuals of each observation,

ê = (y −Xb̂−Wĥ− Zâ)

The overall variance of ê was 503.2015. Now compute the variances of the residuals
for each HY, regress those towards the overall variance, and then express them
relative to the overall variance (Table 10.6). HY 2 and 3 have smaller residual
variances compared to their relative phenotypic variances, while HY 4 has a much
larger residual variance. The relationship of residual variances to phenotypic
means is not very strong.

The new relative values go into R and the process should be iterated a
few more times, although the changes to the diagonals in R will not be very large
and should settle after 5 iterations.
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Table 10.6: Within herd-year residual variances

HY nk S∗k S∗k/V

1 4 494.48 0.9812
2 5 483.33 0.9354
3 3 424.09 0.8347
4 6 662.62 1.3482

Below (Table 10.7) is a comparison of sire EBVs when heterogeneous re-
sidual variances are used or if homogeneity is assumed. In this example there was

Table 10.7: Sire EBVs for two models

Sire HOM Var HET Var
1 -5.61 -4.82
2 8.04 5.84
3 23.53 23.93
4 -25.96 -24.95

no re-ranking of sires or dams(not shown), but the cows with records in HY 4
had lower EBVs after heterogeneous variance adjustments, as would be expected.
The other cows had only minor changes to their EBVs because the relative values
in R were closer to one for those HY.
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Chapter 11

International Models

GEORGIOS BANOS
LARRY SCHAEFFER

11.1 The Holstein-Friesian

The Holstein-Friesian breed of dairy cattle originated in the Netherlands
(Holland). The first established herd in the United States was 1869, and the first
herd in Ontario, Canada was 1881 (Lewington, 1983). The United States placed
much emphasis on improved milk production and were successful at it, such that
in the 1960’s US cattle were being exported back to the Netherlands and into
Europe and elsewhere in the world. Canadian cattle also started to be exported
around the globe.

Although the Holstein breed composes 90% or more of the cattle in North
America, many red breeds are the majority in other countries, like Sweden and
Norway. However, the Holstein breeds drove the need for international sire com-
parisons. Due to increased movement of Holstein genetics during the 1970’s from
North America to other parts of the world, it became important to be able to
compare bulls from the US and Canada to bulls from the importing countries.
One problem was that each country had its own system of milk recording and
genetic evaluations, and more importantly, each country had different standards
and methods of expressing EBVs of bulls. Importers of bull semen were facing
the challenge of selecting sires from several exporting countries. Producers un-
derstood their own country’s EBV system, but did not know or trust the EBV
system in other countries, and therefore, they did not know how to rank foreign
bulls compared to their own. By the same token, it was important for the se-
men exporter to make sure their bulls were ranked highly, by some means, in
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the importing countries or that producers in the importing country knew how to
interpret foreign EBVs.

11.1.1 International Friesian Strain Comparison Trial

The Food and Agriculture Organization (FAO) of the United Nations or-
ganized a country comparison trial in Poland in the mid 1970’s, the most extensive
cattle experiments of all time. During the first three years, 80,000 doses of semen
from ten different countries were used on 30,000 Polish Black and White cows loc-
ated on 70 state farms. The countries involved were Canada, the United States,
the United Kingdom, Germany, Denmark, Israel, the Netherlands, Sweden, New
Zealand, and Poland. Each country was to choose a random sample of young
sires in their progeny test programs that were eligible for exportation to Poland.
Thus, it would take almost 5 years before those daughters completed their first
lactations so that comparisons between countries could be made. As well as pro-
duction traits (milk, fat, protein), beef performance, meat quality, body size, feed
conversion, health, and reproduction were carefully recorded. At the insistence of
Canada and the United States, type classification traits were also scored. Enough
traits were measured in the trial such that every country was superior for at least
one trait, and none were at the bottom for all traits. The organizers on the Polish
side were Jasiorowski, Stolzman, and Reklewski (1988).

While the idea looked reasonable on paper, the notion of a fair compar-
ison was not possible. The samples of bulls were not totally random. However,
Poland benefitted greatly by receiving all of this free superior genetic material
from several countries. The final results were published in 1988, but by that time
each country had improved genetically by different amounts, so that the results
no longer applied to the current generation of bulls.

A similar trial for eight red and white breeds was set up in Bulgaria, but
the results were never published. Importers needed a faster method of getting
good comparisons among individual bulls from different countries.

11.2 Conversion Methods

Banos (2010) described the history of the formation of Interbull which
began with debates over conversion methods. In 1981 the International Dairy
Federation (IDF) sanctioned the use of equations to convert a sire’s genetic merit
assessed in one country to the genetic base and scale of another country. The
approach was to use a simple regression,

EBVI = a + b(EBVE) + e
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where EBVI is the EBV in the Importing country, and EBVE is the EBV in the
Exporting country. Thus, there had to be a number of bulls that had enough
daughters in both countries in order to obtain estimates of a, the intercept, and b,
the slope. Then those a and b values were applied to all EBVE to convert them to
the Importing country mean and scale. The debate became who was responsible
for calculating a and b, the Importing, the Exporting, or some other country.
The results varied tremendously depending on which bulls were included in the
analyses and who was doing the calculations. Goddard (1985) and Wilmink et
al. (1986) modified the regression approach to account for the accuracies of the
EBVs from each country. Regressions were used for more than 2 decades.

Another source of bias was the proofs of foreign bulls in an importing
country. If a bull was being imported to another country, the semen was probably
worth much more than semen of domestic bulls in the importing country. The
result was that only the more prosperous herds could afford to buy the semen,
and this semen was undoubtedly used to breed the superior animals of the herd.
Also, the daughters of those bulls could be preferentially treated once they were
in the herd. Therefore, the EBV of the foreign bull in the importing country
could be significantly biased. Biased EBVs should not be used in deriving a and
b values.

The biases could be noticed by trying to derive reciprocal equations to
convert back and forth between countries. For example, if

EBVI = aE + bE · EBVE
EBVE = aI + bI · EBVI

when you try to convert EBVI back to EBVE , you get

EBVE = aI + bI · (aE + bE · EBVE)

which only works if aI = −bI · aE and if bI × bE = 1, and this seldom happened.
Another problem with the conversion method was that bulls from the

exporting country, after conversion, would rank exactly the same in the importing
country as they did in their home country. Thus, there was no allowance for the
possibility of a genotype by environment interaction. EBV of foreign bulls in
importing countries often did not rank the same as in their home countries.

Finally, there were sometimes importing countries that did not have any
bulls from country X proven in their country, and therefore, there was no data
from which to calculate a and b values. However, some manipulations were done
sometimes involving three countries. For example, bulls from country A were used
in country B, but not in country C, and bulls from country B were used in country
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C. Then the conversion equation of EBV from country A to country B and the
conversion equation from country B to country C could give a conversion equation
from country A to country C, indirectly. These types of conversion equations were
always less useful than those having actual data between the two countries, and
were discouraged.

Conversion equations were always limited to a comparison of bulls in two
countries. The methods did not allow good comparisons between 20 or more
countries at the same time.

11.3 Linear Model

Schaeffer (1985) proposed an alternative method to conversion for the com-
parison of bull EBV across country. The method was based on a linear model
fitting the effects of country of evaluation, genetic groups, and sire to national
EBV of bulls from different countries. This approach allowed the inclusion of all
bulls with a national genetic evaluation (not just those with EBV in more than
one country). Bulls were linked through their pedigree, making it possible to
express the genetic merit of all bulls, independently of the country of origin, on
the scale and base of each country separately. However, all bull rankings were ini-
tially identical as the model assumed a genetic correlation of unity among different
countries, implying no genotype by environment interactions, and constituting an
important limitation of the method. Rozzi et al. (1990) applied this model to a
few countries.

Schaeffer (1994) extended the model to account for a genetic correlation
among countries of less than unity, thereby allowing bulls to be ranked differently
in each country, depending on the locally prevailing conditions. The new method
was termed Multiple Across Country Evaluation (MACE) and required estimates
of genetic parameters for the participating countries. Different methods for estim-
ating the genetic parameters were proposed. MACE was a crucial development
in international genetic evaluations that paved the way for the Interbull services.

11.3.1 The Model

The first step in MACE is to convert sire proofs (EBV or ETA) into de-
regressed proofs, one country at a time, using an estimate of the effective number
of daughters in each country. An overall pedigree file is used for bulls from all
countries, based on sire, maternal grandsire, and maternal granddam, for which
a set of rules similar to those of Henderson were derived. The model for a sire
de-regressed proof, ykji, for bull i in country k is

ykji = µk + gkj + skji + ekji
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for µk being the country mean proof, gkj is a genetic group (defined over bulls in
all countries in MACE), and skji is the sire true proof, and ekji is the residual
which has variance equal to

V ar(ekji) = σ2
ek
/dki

where dki is the effective number of daughters of bull i in country k, and σ2
ek

is
the residual variance of country k. The variance of sire true proofs is Aσ2

s , where
A is based on all animals going into MACE. Either the ratio of residual to sire
variance is known, or it has to be estimated.

Usually ykji is known and the gkj + skji have to be predicted, but in de-
regression, we want to find ykji such that they give us the sire proofs that have
been provided. We also need to determine the country mean and group effects.
So we must work iteratively. Construct MME, except for the right hand sides.
Then put in the sire proofs for the bulls from one country and these can generate
ykji, which are then used to estimate µk, and then all other animals are solved
based on elements of A−1. Using the full set of solutions, then the entire process
is repeated.

1. For sires with proofs,

Z′Dy = Z′DXµk + Z′DZQg + (Z′DZ + Awwα)sw + Awoso

where X is a column of ones, Z is an identity matrix, Aww are the inverse
elements of the bulls with proofs in country k, sw, Awo are the inverse
elements of bulls with proofs in country k with all other relatives in all
countries NOT having proofs in country k, so, and D is a diagonal matrix
with elements equal to the number of effective daughters in country k for
each bull with a proof in country k.

2. To estimate µk, then

µk =
∑
i

Z′Dy/
∑
i

Z′DZ = X′Dy/X′DX

where X′DX is a scalar equal to the total effective number of daughters of
all bulls in country k.

3. Solve for so as
Aooso = Aowsw.

The rules for making A−1 can be summarized in the following table. The
value of x is 16/(m + 11) where m = 0 if both sire and MGS are known, m = 1
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if the sire is known and MGS is unknown, m = 4 if sire is unknown and MGS
known, and m = 5 if both sire and MGS are unknown. The MGD is assumed
unknown in all cases. Inbreeding is ignored.

Bull Sire MGS MGD
Bull x -.5x -.25x -.25x
Sire -.5x .25 x .125 x .125x
MGS -.25x .125x .0625x .0625x
MGD -.25x .125x .0625x .0625x

The deregressed proofs are then

yk = (Z′DZ)−1Z′Dy.

Once all countries have had the sire proofs de-regressed, then they go into MACE,
which is a multiple trait version of the equations that were just used. Correlations
among countries either have to be assumed or estimated. There have been several
proposed methods for estimating the correlations.

11.3.2 Numerical Example of MACE

The following example (Table 11.1) is taken exactly from Schaeffer (1994).
Assume the following pedigrees and proofs of bulls from two countries. Phantom
groups are indicated with the letter P in front of the group number. This example
has 6 phantom groups.

Bull 1 has daughters in both countries. Sire 10 has a son in both
Bull 2 has daughters in country A but a son in country B.
Bulls 9 and 11 appear only in their respective countries as MGS.
The relationship matrix inverse contains both animals and phantom groups.
The part for the real animals is

A−1 =
1

176



256 0 0 0 0 −128 −64 0 0 0 0
0 320 0 0 −128 32 0 −128 −64 0 0
0 0 256 0 0 0 0 −64 0 −128 0
0 0 0 256 0 0 0 0 0 −128 −64
0 −128 0 0 256 −64 0 0 0 0 0

−128 32 0 0 −64 256 32 0 0 0 0
−64 0 0 0 0 32 192 0 0 0 0

0 −128 −64 0 0 0 0 256 32 32 0
0 −64 0 0 0 0 0 32 192 0 0
0 0 −128 −128 0 0 0 32 0 304 32
0 0 0 −64 0 0 0 0 0 32 192


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Table 11.1: Example Data for MACE d is effective number of daughters DRP is
de-regressed proof

Bull Sire MGS MGD m Country A Country B
dA DRPA dB DRPB

1 6 7 P5 0 10 +56 100 +9
2 8 9 P5 0 20 -23
3 10 8 P5 0 50 +8
4 10 11 P6 0 40 +3
5 2 6 P6 0 20 -11
6 P1 P2 P6 5
7 P1 P2 P6 5
8 P1 P2 P6 5
9 P3 P4 P6 5
10 P3 P4 P6 5
11 P3 P4 P6 5

and the coefficients between animals and phantom groups are in the Table 11.2.
All values multiplied by 176.

The assumed heritabilities were 0.36 for country A, and 0.235 for country
B.

The assumed genetic correlation between countries was 0.89.
The resulting solutions from MACE are in the Table 11.3.
To compare bull 4 in country A, add 10.50 and 4.30 to give 14.80, which is

then comparable to other proofs in country A. Bull 4’s proof in country B would
be 1.21 plus 1.12 or 3.33 which is similar to its within country proof.

Bull 1 had progeny in both countries, from MACE its proof in country A
should be 41.63 (compared to 56 based on 10 effective daughters) and in country
B should be 8.23 (compared to 9 based on 100 effective daughters). Thus, MACE
combines information on a bull from different countries, and incorporates rela-
tionships to bulls within and across countries. MACE can handle any number of
countries.

Suppose the daughters of bull 1 in country A were suspected of being from
highly selected dams, and preferentially treated daughters, then bull 1’s proof in
country A could be omitted from the analysis. Sons of bull 1 that enter into
country A’s progeny testing programs should receive daughters that are not from
highly selected dams nor preferentially treated daughters, and therefore, their
proofs in country A should be nearly unbiased. MACE relies on each country
doing a good job at national genetic evaluations. If a country has a bias in their
evaluations, then that could affect MACE results, for bulls in all countries. Hence
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Table 11.2: Bull by phantom group coefficients of the relationship matrix inverse

ID P1 P2 P3 P4 P5 P6
1 0 0 0 0 -64 0
2 0 0 0 0 -64 32
3 0 0 0 0 -64 0
4 0 0 0 0 0 -64
5 0 0 0 0 0 -64
6 -88 -44 0 0 32 -28
7 -88 -44 0 0 16 -44
8 -88 -44 0 0 48 -44
9 0 0 -88 -44 16 -44
10 0 0 -88 -44 32 -12
11 0 0 -88 -44 0 -28
P1 308 66 0 0 0 66
P2 66 209 0 0 0 33
P3 0 0 308 66 0 66
P4 0 0 66 209 0 33
P5 0 0 0 0 224 0
P6 0 0 0 0 0 224

the need for data validation prior to putting data into MACE.

11.4 The International Bull Evaluation Service

Interbull was formed in 1983 as a joint venture of the International Com-
mittee for Animal Recording (ICAR), the European Association for Animal Pro-
duction, and the International Dairy Federation. The mandate of Interbull was
to monitor, support and promote developments in the international genetic eval-
uation of dairy sires. In 1991 the Interbull Centre was established in Uppsala,
Sweden, as the headquarters of the organization. For the first 3 years research
on international genetic evaluations was collaborative in nature exemplified by
different joint projects with the European Community and a consortium of Nor-
dic countries. At the same time MACE was developed allowing a large-scale
implementation of international genetic evaluations. Year 1994 marked the on-
set of routine genetic evaluation services, using national genetic evaluations from
4 different countries (Denmark, Finland, Norway and Sweden) and two breeds
(Ayrshire and Holstein) as input. In February 1995 the number of countries in
the service increased to 10, including most of the major semen exporters.
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Table 11.3: Solutions to multiple country analysis (MACE)

Item Country A Country B
Mean 10.50 1.21
bull 1 31.13 7.02
bull 2 -26.54 -5.95
bull 3 -2.41 -0.48
bull 4 4.30 1.12
bull 5 -29.22 -7.07
bull 6 10.94 2.32
bull 7 9.00 2.01
bull 8 -12.88 -2.92
bull 9 -8.30 -1.84
bull 10 1.47 0.44
bull 11 0.05 0.07
P1 2.59 0.55
P2 1.29 0.28
P3 -0.98 -0.15
P4 -0.49 -0.08
P5 1.56 0.39
P6 -3.98 -0.99

11.5 From Past to Present

There were a number of technical issues with MACE and the Interbull
Services that needed attention before there would be worldwide acceptance of
international genetic evaluations. Scientists from around the world joined forces
and conducted valuable research aimed at the technical issues.

11.5.1 Data Validation

The quality of International Genetic Evaluation (IGE) was the main issue.
Quality was dependent on the National Genetic Evaluation (NGE) that were
the input into MACE. Any problems in NGE would permeate into MACE and
reduce the effectiveness of IGE. Boichard et al. (1995) developed three methods to
validate the genetic trend in NGE. Genetic trend was found to be overestimated
in a number of countries, resulting in considerable bias in IGE. All participating
countries had to pass the 3 tests in order to have their NGE included in MACE.
Thus, the countries that had overestimates of genetic trend, then had to figure
out how to correct their national genetic evaluation models and methods. Klei et
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al. (2002) proposed a method to improve error detection in NGE, based on the
consistency of EBV and their reliabilities in consecutive evaluation runs.

11.5.2 Dependent Variables

Initially MACE used NGE as the observations in the model, but because
some bull EBVs would be less than 99% accurate, the EBV had to be de-regressed
so that all fixed and random effects that are in the MACE model are removed from
the national EBV prior to MACE. This avoids double regressing the EBVs and
compromising the variance of the dependent variable. The de-regression process
is based on work by Sigurdsson and Banos (1995) and Jairath et al. (1998).

11.5.3 Genetic Correlations

Genetic variances and covariances constitute an important feature of IGE.
The genetic correlations were originally meant to describe genotype by environ-
ment (GxE) interaction, that daughters of a bull may fare differently in different
countries and environments. However, correlation estimates also reflect differ-
ences in data, genetic evaluation models, and trait definitions across countries.
The first few IGE used a genetic correlation of 0.995 due to a lack of appropriate
estimates. Thus, the bulls ranked almost identically in all countries.

Sigurdsson et al. (1996) proposed the first method for estimating the cor-
relations and it was implemented by Interbull. Klei and Weigel (1998) proposed
an alternative method that was used for conformation traits, and by January
2004, all traits analyzed by Interbull used this method. The method was compu-
tationally demanding and not all countries could be included in the estimation at
one time. Subsets of data had to be run in sequential steps and then the results
combined to produce the final matrix, with the need to insure the matrix was
positive definite, Jorjani et al. (2003). By 2010, the average genetic correlation
between the USA, the United Kingdom and New Zealand decreased to 0.84.

11.5.4 Time Edits

Every country uses a different time frame of data in the NGE. Canada goes
back to 1957, for example, while some countries may not have data prior to 1970.
Simulation work by Weigel and Banos (1997) showed that a certain time frame
for data inclusion should be defined in all countries to ensure that the genetic
parameters are relevant for the most recent populations of bulls. A sliding time
window was originally adopted, but as of January 2004, the time window has
stopped sliding and is fixed to the beginning of 1986 and 1981 for all countries.
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11.5.5 Reliability

Reliabilities of IGE are based on the principle of Information Source, Har-
ris and Johnson (1998). Reliability is based on the number of daughter records in
each country, incorporating information from granddaughters, combined across
country and finally includes parent information. This is an approximation be-
cause an inverse of the MACE MME is not possible. MACE is solved by an
iterative algorithm, currently based on an approach by Klei (1998). The notion of
Effective Daughter Contribution was developed (Fikse and Banos, 2001), which
considered contemporary group structure, correlation between repeated records
and reliability of dams of daughters, which gives a weighting factor in MACE.

11.5.6 Practicality

The final check was whether MACE results were reliable and meaningful
within each country. Rex Powell of USDA made several studies showing the
weaknesses of MACE in the early years, and the strengths of MACE in the later
years. Fabiola Canevesi of Italy and others also made reports to Interbull meetings
that led to changes in procedures which helped improve MACE rankings of bulls.
Bert Klei of Holstein USA revised the software package so that MACE would
run more efficiently, as did Peter Sullivan of Canadian Dairy Network. Interbull
and MACE have truly been based on international collaboration and has been
on-going for over 30 years.

11.6 Current Status

IGE now encompasses 30 countries, 6 breeds, 114,400 bulls and 38 traits
with the number of bulls increasing each year. Some countries have been grouped
into regional areas, such as Denmark-Finland-Sweden, or Germany-Austria, or
the Netherlands-Luxemburg-Belgium. The genetic correlations among countries
in a group is unity.

Multiple trait MACE (Schaeffer, 2001) is now being explored to accom-
modate more than one trait per country at a time. Zero residual covariances are
assumed across countries which makes the MME easier to create.

Genomics and the availability of SNP arrays are now offering interesting
possibilities for better IGE. International cooperation is imperative because each
country may not be able to afford to genotype their bulls. Sharing genotypes will
improve IGE calculations. Methodologies need to be developed.
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11.7 Interbull Workshops

The dairy industries of different countries have collaborated very well over
the years and the amount of disagreement between countries has been greatly
lessened, although each is pursuing different selection strategies within their na-
tional programs in order to gain an edge in the export markets. No other species
has had this amount of international cooperation.

Part of the reason for this has been the organization of annual (or more
frequent) workshops sponsored by Interbull. In 1994, for example, there were
about 30 participants in the workshop at Arhus, Denmark when MACE was
first proposed to the world. Gradually over time the number of participants in
each workshop has grown, to where it is nearly close to 200. There are more
presentations wanting to be made, than can be accommodated at times. Many
topics are discussed at each meeting where research on IGE is the main theme.
There are some presentations on changes to NGE from some countries from time
to time. Or countries may find a problem, they think, in the MACE results and
try to illustrate it. The workshops have been extremely successful and useful to
Interbull.

11.8 References

BANOS, G. 2010. Past, present and future of international genetic evaluations
of dairy bulls. Proceedings of 9th WCGALP, Leipzig, Germany.

BOICHARD, D. , B. BONAITI, A. BARBAT. 1995. Journal of Dairy Science,
78:431-437.

FIKSE, F. , G. BANOS. 2001. Journal of Dairy Science, 84:1759-1767.

GODDARD, M. E. 1985. A method of comparing sires evaluated in different
countries. Livest. Prod. Sci. 13:321-331.

HARRIS, B. , D. JOHNSON. 1998. Interbull Bulletin 17:31-36.

JAIRATH, L. , J. C. M. DEKKERS, L. R. SCHAEFFER. 1998. Journal of
Dairy Science, 81:550-562.

JASIOROWSKI, H. A. , M. STOLZMAN, Z. REKLEWSKI. 1988. The In-
ternational Friesian Strain Comparison Trial: A World Perspective. FAO,
Rome.

JORJANI, H. , L. KLEI, U. EMMANUELSON. 2003. Journal of Dairy Sci-
ence, 86:677-679.



11.8. REFERENCES 165

KLEI, L. 1998. Interbull Bulletin 17:3-7.

KLEI, L. , K. A. WEIGEL. 1998. Interbull Bulletin 17:8-14.

ROZZI, P. , L. R. SCHAEFFER, E. B. BURNSIDE, W. SCHLOTE. 1990. In-
ternational evaluation of Holstein-Friesian dairy sires from three countries.
Livest. Prod. Sci. 24:15.

SCHAEFFER, L. R. 1985. Model for international evaluation of dairy sires.
Livest. Prod. Sci. 12:105-115.

SCHAEFFER, L. R. 1994. Multiple-country comparison of dairy sires. Journal
of Dairy Science, 77:2671-2678.

SCHAEFFER, L. R. 2001. Multiple trait international bull comparisons. Livest.
Prod. Sci. 69:145-153.

SIGURDSSON, A. , G. BANOS. 1995. Acta. Agric. Scand. 45:207-219.

SIGURDSSON, A. , G. BANOS, J. PHILIPSSON. 1996. Acta. Agric. Scand.
46:129-136.

WEIGEL, K. A. , G. BANOS. 1997. Journal of Dairy Science, 80:3425-3430.

WILMINK, J. B. M. , A. MEIJERING, B. ENGEL. 1986. Conversion of
breeding values for foreign populations. Livest. Prod. Sci. 14:223-229.





Chapter 12

Multiple Traits

LARRY SCHAEFFER

12.1 Multiple Lactation Records

The Repeated Records Animal Model was suitable to analyze multiple
lactation records per cow if the genetic correlation between lactation records was
unity. However, if the genetic correlation was less than unity, then each lactation
record would be essentially a different trait. First lactation cows were known to
have lower production levels than in later lactations. By assuming each lactation is
a different trait, then there can be a different model for each trait. There could be
different factors affecting each lactation, but you could also have specific effects on
each lactation rather than an amalgamation of one effect on all lactations. Finally,
if permanent environmental effects change or accumulate from one lactation to the
next, then a multiple trait model would allow different Permanent Environmental
(PE) effects combined with the residual variance for each trait.

A multiple trait model would yield separate EBVs per animal for each trait,
whether the cow was observed for each trait or not. These would be estimated
through the genetic correlations and through the additive genetic relationships
among animals. In 1990, however, when the animal model was introduced, the
computing power of the time did not allow including more than one trait at a
time. There had been multiple trait sire models for beef cattle by 1990, but
the number of equations to solve were much less than the number of cows in a
single trait animal model. Henderson (1976) described multiple trait models and
applications. Pollak and Quass (1976) and Pollak et al. (1984) demonstrated the
ability of multi-trait models to account for the selection on growth records in the
beef cattle. Finally, Tier and Meyer (2004) provided an approximation method

167
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to obtain accuracies of multi-trait EBV.

12.1.1 Canonical Transformation

In the 1990’s multiple trait models could be made practical if the data
could be transformed. The canonical transformation could be applied if every
animal was observed for every trait (i.e. no missing data), if the model was the
same for each trait (i.e. same factors and levels of factors), and if there was only
residual and additive genetic effects as the only random variables in the model
(i.e. all other factors had to be fixed). Then there was a linear transformation
of the data that would yield diagonal covariance matrices for the genetic and
residual effects for the transformed variables. With diagonal covariances, then
each transformed trait could be analyzed as a single trait. Once the EBVs were
calculated for the transformed data, they could be reverse transformed back to
their original scales. The advantage of the canonical transformation was to change
one m trait problem into m single trait problems. However, the assumptions to
apply a canonical transformation were too restrictive because most models would
have more than two random factors, and observations would be missing on some
of the traits, and models could be different for some traits. The application of
transformations were limited.

Assume the following covariance matrices for residual and sire genetic ef-
fects.

R =

 120 30 −10
30 90 −10
−10 −10 60

 , G =

 40 15 3
15 20 4
3 4 10

 ,

To obtain the canonical transformation matrix, follow these steps:

1. Determine the eigenvalues and eigenvectors or R.

R = UDU′

U =

 .8343918 .5506134 .02480492
.5249279 −.8075789 .26882522
−.1680507 .2112848 .96286952


D = diag( 140.88748 72.16205 56.95047 )

2. Determine the transformation to make the transformed residual matrix
equal an identity matrix.
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T = U′D
−.5

=

 9.903900 4.677364 .1871917
6.230686 −6.860241 2.0287038
−1.994695 1.794827 7.2663463


T−1 =

 .070296518 .044422455 −.01415807
.064816505 −.09506716 .02487217
.003286921 .03562225 .12759063


R∗ = T−1RT′

−1

= I

3. Apply the transformation to G and compute the eigenvectors of the trans-
formed matrix.

H = T−1GT′
−1

=

 .32106906 .04968076 .10974890
.04968076 .16089013 −.01744568
.10974890 −.01744568 .23099418


= PMP′

P =

 .8358324 −.3019151 .4585101
.1354278 −.6959903 −.7051644
.5320183 .6514943 −.5408435



4. The final transformation matrix is calculated as

Q = P−1T−1

=

 .06928290 .04304126 .05941517
−.06419453 .07602146 .07008831
−.01525304 .06804932 −.09303716


QRQ′ = I

QGQ′ =

 .3989753 0 0
0 .1987716 0
0 0 .1152064


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The data are transformed by converting each set of m observations on
animal i

zi = Qyi.

A canonical transformation for 3 or more covariance matrices is not pos-
sible such that the resulting transformed covariance matrices are all diagonal.
However, Misztal et al. (1995) found an approximate method of diagonalization
for more random factors.

12.1.2 Cholesky Transformation

Another transformation is the Cholesky decomposition of R, so that the
transformed residual covariance matrix is diagonal. This simplifies the creation
of MME, but all of the random factor covariance matrices are not diagonal after
transformation. The Cholesky decomposition also works if some traits are missing
(i.e. not observed), provided that if trait k is missing then all traits from 1 to
k − 1 must be present, and all traits k to m must be missing. This is possible if
the traits are observed over time, like lactations in dairy cows. Using the previous
R matrix, then the Cholesky decomposition is a lower triangular matrix.

R = LL′

L =

 10.95445 0 0
2.738613 9.082951 0
−.9128709 −.8257228 7.6475387


L−1 =

 .0912871 0 0
−.02752409 .11009638 0
.00792491 .01188737 .13076102


L−1RL′

−1
= I

The transformed data are

z = L−1y,

and the transformed genetic covariance matrix is

G∗ = L−1GL′
−1
.

Multiple trait equations are easier to set up if the residual covariances are zero.
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12.1.3 Scale Transformation

In 2012, no one worries about using transformations because there are more
than enough of computer memory, storage, and speed, to handle any multiple
trait models with very large numbers of traits. However, if the traits are greatly
different in scale, such as milk yield measured in thousands of kilograms and a
second trait measured in tenths of a cm, there can be rounding error problems
and difficulty in estimating covariances between the traits. Thus, it is sometimes
useful to divide the traits by their overall means, convert trait ti as

zi = (ti − t)/t.

The transformed variables have a mean of zero and the range of their observations
is similar for each trait. After estimating variances and covariances for the zi then
multiply by the trait means to return to the original scales. Correlation estimates
do not change between scales.

12.2 Numerical Example

Consider a herd of cows with one to three lactation records per cow for a
trait. The model for this simple example is

ytij = µt +HY Sti + atj + etij

where

t is the trait number, 1, 2, or 3,

ytij is a lactation yield for trait t,

HY Sti is a random herd-year-season effect,

atj is a random animal additive genetic effect for trait t, and

etij is a random residual effect.

The assumed additive genetic covariance matrix is

G =

 36 30 30
30 40 34
30 34 45

 ,

and

R =

 85 0 0
0 88 0
0 0 90

 ,
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and
V ar(h) = I(14).

The residual covariance matrix is diagonal because there are no common envir-
onmental effects on records made in different years. Similarly, herd-year-season
effects are also uncorrelated because they occur at different times. The genetic
covariance matrix, however, shows that the variability of second and third records
are greater than for first records, and because they are made on the same animal
there is a genetic correlation between records of about .7 to .8. The data are
shown in the Table 12.1.

Table 12.1: Multiple Lactation Model

Cow Sire Dam HYS t1 HYS t2 HYS t3
10 1 5 1 53 3 64 5 68
11 2 6 1 62 3 73 5 70
12 3 7 1 74 3 81
13 4 8 1 46
14 1 9 2 58 3 66 5 69
15 2 5 2 65 4 76
16 3 6 2 37
17 3 8 2 49 4 61 5 65
18 4 7 2 51 4 62 5 59

The MME are going to be of order (3 + 5 + 18*3)=62. There will be 3
equations for each animal, 3 equations for overall means, and 5 equations for HYS
effects. The solutions to the MME were

µ =

 55.163
68.000
66.660


and for HYS were 

ĥ1

ĥ2

ĥ3

ĥ4

ĥ5

 =


1.1614
−1.1614

0.5046
−0.5046

0.0000

 ,

and for the animals are shown in the Table 12.2.
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Table 12.2: Multiple trait animal solutions for example data

Multi-trait MME Single trait MME
Animal Lact 1 Lact 2 Lact 3 Lact 1 Lact 2 Lact 3

1 -0.39 -0.69 -0.27 -.03 -1.39 0.73
2 3.37 3.39 3.24 2.54 1.74 0.65
3 -0.06 0.26 0.18 -0.49 0.74 -0.19
4 -2.92 -2.95 -3.14 -2.01 -1.09 -1.19
5 1.17 1.10 1.18 0.94 0.37 0.27
6 -1.57 -1.08 -1.09 -1.85 0.45 0.65
7 2.34 2.07 1.63 2.36 0.89 -1.19
8 -2.49 -2.40 -2.23 -2.11 -1.25 -0.19
9 0.55 0.32 0.51 0.66 -0.47 0.46
10 -0.55 -0.81 -0.33 -0.23 -1.43 0.78
11 2.16 2.43 2.34 1.25 1.55 1.29
12 5.08 5.07 4.56 3.83 2.80 -0.69
13 -4.04 -3.79 -3.80 -3.53 -1.17 -0.69
14 0.63 0.13 0.63 0.97 -1.40 1.05
15 4.38 4.36 4.18 3.37 2.34 0.46
16 -3.64 -2.77 -2.81 -3.92 0.60 0.23
17 -2.44 -2.37 -2.15 -1.93 -1.50 -0.38
18 -1.89 -2.29 -2.79 -0.37 -1.19 -2.38

The last three columns of Table 12.2 are corresponding solutions if each
lactation was analyzed separately as a single trait. The solutions for lactation 1
are similar between multiple trait and single trait analyses, but single trait solu-
tions for lactations 2 and 3 are much more different and much lower in variability
between high and low animals. Some of the solutions are opposite in sign com-
pared to their multiple trait values. The reason for the bigger differences is due
to culling biases that are not considered during single trait analyses. Cows that
make lactation 2 and 3 records have been selected based on their previous lacta-
tions. When lactations 2 and 3 are analyzed with lactation 1 in the multiple trait
model, then the differences in production between cows that have later records
versus those that do not is present in the data. Multiple trait analyses, to some
extent, can account for culling biases, provided that the genetic covariances are
well estimated. Such covariances should be estimated using cows that have been
allowed to have all three lactations without any being culled (even if they should
have been culled). Such data are not usually available.

The multiple trait EBVs combine information from all lactations and due
to the assumed genetic correlations of .7 to .8, the solutions are very similar for
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each lactation, i.e. animals rank the same. The accuracies of multiple trait EBVs
are higher than for single trait EBVs due to the combined use of data from all
lactations contributing to each individual lactation EBV.

12.3 Economic Traits

This book has concentrated on genetic evaluation for milk production, but
milk production can included milk yield, fat and protein percentages, fat and
protein yields, and somatic cell scores. New traits are frequently being studied,
and if possible, are included into milk recording programs, or breed association
recording programs.

Breed associations have been very concerned with body conformation or
type classification of cows nearly as long as milk production. In Canada, the
Holstein breed association, for many years, had about 30 main conformation traits
that were subjectively scored by trained classifiers, and an additional 60 defective
characteristics. The defective characteristics were similar to genetic mutations
that were contrary to the breed standards, and which rarely occurred. Genetic
evaluations for conformation traits have been conducted along with production
traits, assuming the traits are normally distributed, but as single traits. However,
conformation traits are collected on every first lactation heifer, and each heifer is
scored for all of the traits, thus, conformation traits could have been evaluated
using multiple trait models applying the canonical transformation. Conformation
traits, because they were subjective, categorical traits, should have been analyzed
by threshold models which will be discussed in a later chapter.

A list of traits evaluated in dairy cattle are given in the Table 12.3.
There are Multiple Trait (MT), systems for calving and reproduction from

the cow perspective, MT systems for disease traits, and MT systems for produc-
tion traits. An MT system for conformation traits would be beneficial, but will
likely not be implemented because there are too many conformation traits.

12.3.1 Numerical Example

Suppose we have milk, fat, and protein 305-d first lactation yields on cows.
Protein was not always observed for each cow, but milk and fat were always
available on each cow. The model for each trait was assumed to be the same.
Correlations between HYS and residual effects were non-zero because the records
for each trait were made during the same time period. The data are shown in the
Table 12.4.

The model for this example is

ytij = µt +HY Sti + atj + etij
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Table 12.3: Economically Important Traits

Area Specific
Calving Calf vitality/mortality

Calf size
Calving ease
Stillbirths

Reproduction Non-return rate
Age at first breeding
Days open
Gestation length
Number of services to conception

Workability Milking speed
Temperament
Leakage
Udder
Likability

Locomotion Rear legs-side view
Rear legs-rear view
Feet-legs score

Conformation Stature
Body depth
Chest width
Rump angle

Disease Mastitis treatments
Other treatments
Ketosis

Longevity Survival
Herd life



176 CHAPTER 12. MULTIPLE TRAITS

Table 12.4: Data for MT example on cows

Cow Sire Dam HYS Milk,kg Fat,kg Protein,kg
10 1 5 1 5386 364 316
11 2 6 1 6213 373 270
12 3 7 1 7428 405 344
13 4 8 1 4639 321
14 1 9 2 5873 366 269
15 2 5 2 6507 346 297
16 3 6 2 4988 333 276
17 3 8 2 5149 351
18 4 7 2 6651 384 317

where

t is the trait number, 1, 2, or 3,

ytij is a lactation yield for trait t,

HY Sti is a random herd-year-season of first lactation effect,

atj is a random animal additive genetic effect for trait t, and

etij is a random residual effect.

Assume the following covariance matrices. The genetic covariance matrix is

G =

 330400 8000 4800
8000 268 160
4800 160 260

 ,

and the HYS covariance matrix is

H =

 70800 1714 1028
1714 57 34
1028 34 56

 ,

and the residual covariance matrix is

R =

 424800 10286 6172
10286 345 206
6172 206 334

 .

For cows with missing protein yields, the appropriate residual covariance matrix
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is

R−p =

(
424800 10286
10286 345

)
.

Covariance matrices should always be tested to ensure they are positive definite.
That means, the eigenvalues need to be calculated and should all be positive.

The order of the MT MME was 63, 3 equations for each of the mean, 2
HYS, and 18 animals. The solutions to the MME are given in the Table 12.5.

Table 12.5: MT solutions to MME

Milk, kg Fat, kg Protein, kg
µ 5873 361 294

HYS 1 14.69 1.73 1.84
HYS 2 -14.69 -1.73 -1.84
Sire 1 -111 2 -1
Sire 2 227 0 -4
Sire 3 -4 2 6
Sire 4 -112 -4 -1
Dam 5 19 -3 6
Dam 6 -144 -3 -9
Dam 7 523 15 15
Dam 8 -416 -10 -6
Dam 9 17 2 -6
Cow 10 -173 0 7
Cow 11 121 2 -12
Cow 12 618 18 21
Cow 13 -540 -17 -9
Cow 14 -30 3 -9
Cow 15 270 -4 2
Cow 16 -297 -8 -6
Cow 17 -350 -5 -1
Cow 18 370 11 12

Notice that cows 13 and 17 obtained EBVs for protein yields even though
their own protein observations were missing. The variances of prediction error
should be smaller than those for single trait analyses, if the same parameters are
used for the variances. MT analyses assume that the covariance matrices are
accurately estimated. Errors in these matrices can result in biased EBV with
larger true prediction error variances.
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Genetic evaluations are shifting more towards MT analyses in order to
utilize genetic correlations and information from other traits to achieve more
accurate EBVs. Schaeffer (1984) showed the advantages of MT analyses over
single traits and the conditions that make MT analyses favored over single traits.
Traits with low heritability gain accuracy in EBV if they are analyzed with traits
having higher heritabilities. Also if the difference between genetic and residual
correlations is large, then MT analyses are much better than single trait. Lastly,
if there is selection on a trait such that another trait is observed only on selected
animals, then EBV for the second trait can be more accurate as opposed to
ignoring information from the first trait. MT analyses do not completely remove
the bias of selection, but reduce the effects of it on the second trait EBVs. This
depends on the degree of selection, or severity of culling.

MT analyses are helpful for traits that are recorded on only a few animals
rather the entire population. These observations do not occur due to selection or
culling on other traits, but are usually limited due to their cost of recording. An
example would be ultrasound backfat measures in sheep, where only a few herds
find it beneficial to take ultrasound measurements.
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Chapter 13

Test Day Models

RAPHAEL MRODE
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13.1 Test Day Records

The basic unit of information gathered by milk recording organizations
around the world is a Test-Day (TD) record. A TD record is a measure of the
amount of milk produced by a cow within 24 h on a given day during her lactation,
and includes the fat and protein percentage in the milk. TD yields have been
gathered since 1905 in Michigan started by Helmer Rabild of Denmark. He was
hired in 1908 by the US Department of Agriculture to create the national milk
recording program.

For every cow, there are 7 to 10 TD records per lactation stored in their
milk recording agency. The number of tests depends on the frequency of testing
and the lactation length of the cow. Each TD record is an estimate of the yield
given in 24 h, even though the cow may have been milked 2 or 3 times in a day,
or 5 times over 2 days. Today there are many herds with robotic milking systems,
so that cows decide how often they are milked per day, although they are forced
to go through at least twice in order to receive feed.

In Canada, the federal government had two recording plans for many years.
One was to collect the 24 h yields every day during the lactation (expensive in
time and cost), or one TD every 30 days. With the first plan, a 305-d yield was
just the sum of all TD yields from day 1 to day 305. Due to the cost, this plan
was dropped by 1970.

In the second plan, assumptions had to be made in order to calculate a

179
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305-d yield. The Test Interval Method (TIM) computed the average yield between
two consecutive tests and multiplied the average by the number of days interval
between the two tests. Problems existed for the first and last tests, and special
procedures and formula were derived for these two situations. Unfortunately,
these methods and formula had to be updated and modified often. During a
Dairy Technical Committee meeting in Ottawa in 1975, Dr. John Moxley of
Macdonald College of McGill University in Montreal, stated that he believed
genetic evaluations would be easier if scientists analyzed TD records themselves,
rather than trying to find appropriate methods to adjust first and last test days.
However, in 1975 computers still had limited memory and speed, and genetic
evaluations had just started to use Sire Models in Canada.

Australians had been using test day records since 1985 to produce indexes
on cows. Robert W. Everett of Cornell University had a plan for analyzing TD
records within herds that he developed while in Australia, and which he paten-
ted in 1993 (See Rothschild and Newman, 2002), and implemented at Cornell
University. In 1990, the animal model was implemented in Canada for genetic
evaluation, personal computers were becoming more common and inexpensive,
and it was obvious that computer speed and memory were going to keep im-
proving rapidly. Now seemed to be the right time to begin thinking about the
analysis of TD records rather than 305-d yields. In 1991, Schaeffer and others
started thinking about lactation curves or trajectories. Early work by Ptak et
al. (1993) considered analyses of TD records where the shape of the curve was
assumed the same for all cows, just the height of the curve was different from cow
to cow. Thinking about this, Jack Dekkers said, “if only you could have random
regressions”. Upon checking Henderson (1984), there was a small paragraph on
“random regressions”, and Henderson, Jr. (1982) had a paper on random regres-
sions in Biometrics. Thus, the Random Regression Model (RRM), or Test Day
Model was developed. Random regressions meant that each cow could have its
own curve, its own shape. Obviously, cows differed in persistency of milk pro-
duction, and producers fed cows according to persistency and level of production.
Selecting cows to change the shape of the lactation curve was now possible.

RRM test day models also allowed changes to be made in milk recording
programs. Cows did not need to be tested at regular 30-d intervals. Early work
showed that at least 4 test day records gave the same level of accuracy in an EBV
as one 305-d lactation record based on 8 or more TD records. A variety of testing
programs were offered to producers resulting in lower costs to the producers due
to less frequent testing. Intervals between TD now vary considerably, but the
ability of the RRM to account for Days In Milk (DIM) during the lactation made
the intervals less critical. However, producers could choose the level of accuracy
they wanted in 305-d yields.
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13.2 Lactation Curves

Phenotypic lactation curves are shown in the following three figures (Figure
13.1, Figure 13.2, Figure 13.3) for milk, fat, and protein yields, respectively. Over
the years there have been more than 20 proposed curve functions to model the
yields in these figures. Functions had from 3 to 5 parameters and were both linear
and non-linear functions. Functions could also be classified as having paramet-
ers which had biological interpretations or those which were basically regression
functions. The more parameters there were, the better was the fit to actual data.
The trade-off was the number of TD records per animal, when estimating a curve
for each cow.

Figure 13.1
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Figure 13.2
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Figure 13.3
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Although the milk production curve in Figure 13.1 represents average first
lactation cows, there is great variability in curve shape from cow to cow. % Most
first lactation cows have their peak milk yield by 45 days in milk, but there are
documented cases where cows have not peaked until 100 days, and on the opposite
end of the spectrum cows that peaked at 10 days and decreased yield thereafter.

Different curve functions may be appropriate for different cows, and one
function does not fit all animals. However, the exceptions are assumed to be in
the minority, and the majority of cows adhere to the curve function.

There have been many proposed functions to model the shape of the lacta-
tion curve, mostly in phenotypic terms. Three of the more popular ones are
mentioned here.

13.2.1 Wood’s Function, 1967

Wood (1967) proposed the following non-linear model for describing lacta-
tion curves in cattle.

yt = a tb exp−ct,

where

yt was yield in week t of lactation,

a was peak yield,

tb was the slope of yields up to the peak, and

expct was the decline in production after the peak,
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a,b,c were parameters to be estimated for an individual or a group of cows.

Typically, the equation would be transformed by taking natural logarithms, and
then solving by simple regression.

ln(yt) = ln(a) + b ln(t) − c t.

This function was widely used after it was introduced, and is still used in
2012. There were only three parameters and those parameters corresponded to
biological interpretations. The biological interpretations fit the majority of cows,
but lactation curves, in practice, were not smooth curves. There were dips or
waves in lactation curves that did not follow the Wood function.

The parameter estimates in the Wood function tend to have high correla-
tions among them.

13.2.2 Wilmink’s Function, 1987

Another popular curve function was given by Wilmink (1987).

yt = a + b t + c exp(−.05 t)

which was a linear function of days in milk (or weeks) and had three unknown
parameters. The biological interpretation was not as clear as with the Wood func-
tion, but a transformation of the data was not needed to estimate the parameters.

The −.05 in the exponential function was derived through trial and error.
Those who have attempted to estimate this value usually find estimates close to
−.05, and the minor discrepancies from −.05 do not cause a significant change in
the lactation curve shape. The parameter estimates in the Wilmink model also
tend to have high correlations among them.

13.2.3 Ali-Schaeffer Function, 1987

Ali and Schaeffer (1987) used the function

yt = µ+ b1X1 + b2X2 + b3X3 + b4X4 + et,

where
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yt = daily yield of cow on DIM t

t = days in milk
X1 = (t/305)

X2 = (t/305)2

X3 = ln(305/t)

X4 = (ln(305/t))2

µ, b1, b2, b3, b4 = unknown regressions
et = residual for day t

X1 and X2 were chosen because they increased as t became larger, and X3 and
X4 decreased as t increased. A problem in estimation is that these variables have
high correlations (positive or negative) among themselves, which makes it difficult
to obtain stable estimates for a particular animal. Let θi represent a vector of
the five parameters in the above equation for cow i, then the next step was to
estimate genetic parameters of the pth element of θi using a model like

θpijkm = (AM)pj + (YM)pk +HY Spm + api + epijkm,

where AM are fixed age-month of calving group effects, YM are fixed year-month
of calving effects, HY S are random, herd-year-season effects, a are random animal
additive genetic effects, and e are random residual effects. The observations in
this model have a degree of error of estimation associated with them that could
differ between animals (but which was usually ignored). The elements could be
analyzed singly or as a multiple trait problem. Thus, there would be a heritability
estimate for µ, b1 through b4 and possibly genetic and residual correlations.

In estimating the curve parameters for a cow, the information on all other
animals was generally ignored. Two cows which belonged to the same age-month
of calving group were not considered in estimating the parameters for each cow,
but such information might have led to parameter estimates with smaller standard
errors. A more accurate approach would be to analyze TD records of all cows
simultaneously, accounting for the fact that there are many cows in the same AM
group, in the same YM group, and in the same HY S. A model might be
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ytijkm = (µj + b1jX1 + b2jX2 + b3jX3 + b4jX4) (AM)j effects
+(µk + b1kX1 + b2kX2 + b3kX3 + b4kX4) (YM)k effects
+HTDm herd-test date-parity
+(µi + b1iX1 + b2iX2 + b3iX3 + b4iX4) ai effects
+(µi + b1iX1 + b2iX2 + b3iX3 + b4iX4) pi, PE effects
+etijkm residual effects

PE effects are needed because we have more than one TD record per animal in
a lactation. The same curve function is used in all factors, in this model, but
this does not need to be the case. For the AM effects, for example, rather than
fitting a curve function, the lactation could be split up into 7-day periods from
day 5 to day 365. Yields in the first five days are not recorded as they are used
to feed calves and not measured. The means for each 7 day period would be
estimated within age and months of calving. These means may not necessarily be
very smooth, but should be a better fit to the data than the curve function. In
some studies the number of covariates for the genetic and PE effects were allowed
to differ.

Notice the HTD effect, which is a particular day in which the supervisor
visits the herd to weigh the milk and take samples. Cows in first lactation on that
test day are all influenced by the environment at that point in time, but the cows
can be in very different stages of lactation on that day, and likely are in countries
where cows calve all year round. In countries with seasonal calvings, cows in a
HTD will be closer together in stage of lactation.

13.3 Example Data

The following data (Table 13.1), on 5 first lactation cows will be used
throughout this chapter to illustrate the methods.

The assumed pedigrees were

Cow Sire Dam
8 1 3
9 2 4
10 1 5
11 2 6
12 1 7

A preliminary study was made to determine the milk yields of cows in first
lactation every 30 days from day 5 to 305. The resulting phenotypic covariance
matrix is given in the table Table 13.2. The corresponding table of phenotypic
correlations are in Table 13.3.
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Table 13.1: TD milk yields, MY, kg on five cows

HTD Cow 8 Cow 9 Cow 10 Cow 11 Cow 12
DIM MY DIM MY DIM MY DIM MY DIM MY

1 4 17.0 6 23.0 106 23.0
2 38 18.6 40 21.0 140 16.8
3 73 24.0 74 18.0 174 11.0
4 106 20.0 108 17.0 208 13.0 7 22.8
5 140 20.0 142 16.2 242 17.0 41 22.4
6 174 15.6 176 14.0 276 13.0 75 21.4 11 10.4
7 201 16.0 203 14.2 303 12.6 102 18.8 38 12.3
8 242 13.0 244 13.4 143 18.3 79 13.2
9 276 8.2 278 11.8 177 16.2 113 11.6
10 303 8.0 305 11.4 204 15.0 140 8.4

Table 13.2: (Co)variances for milk yields on specific days in first lactation

Days in Milk
5 35 65 95 125 155 185 215 245 275 305

5 22 15 10 8 7 6 6 5 5 5 4
35 15 17 12 12 11 10 9 9 8 8 7
65 10 12 16 13 13 13 12 11 10 10 9
95 8 12 13 16 14 13 13 12 12 11 10
125 7 11 13 14 16 14 13 13 13 12 11
155 6 10 13 13 14 16 13 13 13 12 11
185 6 9 12 13 13 13 16 14 14 13 12
215 5 9 11 12 13 13 14 16 14 14 12
245 5 8 10 12 13 13 14 14 16 14 13
275 5 8 10 11 12 12 13 14 14 17 13
305 4 7 9 10 11 11 12 12 13 13 18

Let the matrix represented in Table 13.2 be called V, a phenotypic cov-
ariance matrix.

13.4 Covariance Functions

Kirkpatrik et all (1990; 1994), proposed the use of covariance functions
for longitudinal data of this kind. A covariance function (CF) is a way to model
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Table 13.3: Correlations for milk yields on specific days in first lactation

Days in Milk
5 35 65 95 125 155 185 215 245 275 305

5 1.00 0.78 0.53 0.43 0.37 0.32 0.32 0.27 0.27 0.26 0.20
35 0.78 1.00 0.73 0.73 0.67 0.61 0.55 0.55 0.49 0.47 0.40
65 0.53 0.73 1.00 0.81 0.81 0.81 0.75 0.69 0.62 0.61 0.53
95 0.43 0.73 0.81 1.00 0.88 0.81 0.81 0.75 0.75 0.67 0.59
125 0.37 0.67 0.81 0.88 1.00 0.88 0.81 0.81 0.81 0.73 0.65
155 0.32 0.61 0.81 0.81 0.88 1.00 0.81 0.81 0.81 0.73 0.65
185 0.32 0.55 0.75 0.81 0.81 0.81 1.00 0.88 0.88 0.79 0.71
215 0.27 0.55 0.69 0.75 0.81 0.81 0.88 1.00 0.88 0.85 0.71
245 0.27 0.49 0.62 0.75 0.81 0.81 0.88 0.88 1.00 0.85 0.77
275 0.26 0.47 0.61 0.67 0.73 0.73 0.79 0.85 0.85 1.00 0.74
305 0.20 0.40 0.53 0.59 0.65 0.65 0.71 0.71 0.77 0.74 1.00

the variances and covariances of a longitudinal trait. Orthogonal polynomials are
used in this model and the user must decide the order of fit that is best. Legendre
polynomials, founded in 1797, are the easiest to apply.

13.4.1 Legendre Polynomials

The Legendre polynomials are defined by a recursive formula. The first
two are pre-defined to be

P0(x) = 1, and
P1(x) = x,

then the n+ 1 polynomial is described by the following recursive equation:

Pn+1(x) =
1

n+ 1
((2n+ 1)xPn(x)− nPn−1(x)) .

These quantities are "normalized" using

φn(x) =

(
2n+ 1

2

).5
Pn(x).

This gives the following series of polynomials,
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φ0(x) =

(
1

2

).5
P0(x) = .7071

φ1(x) =

(
3

2

).5
P1(x)

= 1.2247x

P2(x) =
1

2
(3xP1(x)− 1P0(x))

φ2(x) =

(
5

2

).5
(
3

2
x2 − 1

2
)

= −.7906 + 2.3717x2,

and so on. The first six can be put into a matrix, Λ, as

Λ′ =



.7071 0 0 0 0 0
0 1.2247 0 0 0 0

−.7906 0 2.3717 0 0 0
0 −2.8062 0 4.6771 0 0

.7955 0 −7.9550 0 9.2808 0
0 4.3973 0 −20.5206 0 18.4685

 .

Legendre polynomials are defined within the range of values from -1 to +1.
Thus, days in milk have to be standardized (converted) to the interval between
-1 to +1. The formula is

q` = −1 + 2

(
t` − tmin
tmax − tmin

)
.

The minimum time for the matrix, V, in Table 13.2 is 5 days, and the maximum
time is 305 days. For the days in milk given in Table 13.2, let

x′ =
(
−1 −.8 −.6 −.4 −.2 0 .2 .4 .6 .8 1

)
.

Now define M as a matrix containing the polynomials of standardized time values,
raised to different powers.

M =
(

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
)
.
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Let

Φ = MΛ, then
V = ΦHΦ′

= M(ΛHΛ′)M′

= MTM′.

Note that Φ, M, and Λ are matrices defined by the Legendre polynomial functions
and by the standardized time values and do not depend on the data or values in
the matrix V. Therefore, it is possible to estimate either H or T,

H = Φ−1VΦ−T ,

and

T = M−1VM−T

H can be used to calculate the covariance between any two days in milk
between 5 and 305 days. To compute the covariance between days t1 and t2,
calculate the Legendre polynomial covariates as in calculating a row of Φ using
the standardized time values for days t1 and t2. Then the Legendre polynomials
are stored in L, and the variances and covariance for those two DIM are

LHL′

The matrix H is order 11 by 11 or less, but it can be used to calculate variances
and covariances between any two DIM from 5 to 305 days.

Legendre polynomials were chosen because they are orthogonal, which
means that the covariance matrix of polynomials over the entire range from -1 to
+1 are very close to zero. Looking at the correlations in Table 13.3 shows that,
phenotypically, the elements in V are highly correlated to each other, but the
elements in H will have much lower correlations. The correlation issue is related
to problems in estimating covariance matrices and breeding values.

13.4.2 Order of Fit

The matrix V is order 11, and therefore, a full order of fit is one with
11 polynomials which go from 0 to 10 in powers of the vector of standardized
time variables. A full order fit explains all of the variation in the elements of V,
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without error. Thus, if you use H to predict V you predict V perfectly.
Reduced orders of fit try to find an H of smaller dimension which can

predict V with similar accuracy, but there will be errors. The problem is to find
the smallest order for H which predicts V with a low error. That is, find Φ∗ such
that it is rectangular and H∗ has a smaller order, m < 11, but still

V∗ = Φ∗H∗Φ′∗.

To determine H∗, first pre-multiply V by Φ′∗ and post-multiply by Φ∗ as

Φ′∗VΦ∗ = Φ′∗(Φ∗H∗Φ′∗)Φ∗

= (Φ′∗Φ∗)H∗(Φ′∗Φ∗).

Now pre- and post- multiply by the inverse of (Φ′∗Φ∗) = P to determine H∗,

H∗ = P−1Φ∗
′
VΦ∗P−1.

Φ∗ is the first m columns of Φ, and (Φ′∗Φ∗) has order m, is symmetric, and has
an inverse.

Having obtained H∗, then calculate

V∗ = Φ∗H∗Φ′∗,

and let
E = V∗ −V,

then let e be a vector of the upper triangular portion of E, so that

SSm = e′e

with degrees of freedom equal to m(m + 1)/2. In Table 13.4 there are sums of
squares of errors for m decreasing from 11 to 2, for matrix V (Table 13.2).

The SSm become larger as m decreases, meaning that the fit of the model
is becoming poorer. An F−test can be constructed by taking the difference in
SSm from SS10 divided by the difference in degrees of freedom as the numerator,
and that divided by an estimate of the residual variance. The residual variance is

σ2
E = SS10/(66− 55) = 3.4956/11 = 0.3178.

To test the significance of order of fit 5, then

F40,11 = [(37.5334− 3.495584)/(55− 15)]/0.3178 = 2.68
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Table 13.4: Sums of Squares of Errors for Predicting Elements of Covariance
Matrix, V

Order degrees of
of fit freedom SSm

11 66 0.0
10 55 3.495584
9 45 8.089266
8 36 15.83321
7 28 23.96126
6 21 30.34071
5 15 37.53340
4 10 55.06217
3 6 111.1478
2 3 377.9466

compared to the table value of 2.53 at the 0.95 confidence level means it is just
barely significantly different from an order 10 fit.

The matrix H from an order 5 fitting was

H5 =


24.0199 0.8687 −1.6743 0.5643 −0.4771
0.8687 3.4882 −0.7436 0.0340 −0.0899
−1.6743 −0.7436 1.4325 −0.3654 0.0552

0.5643 0.0340 −0.3654 0.6815 0.0110
−0.4771 −0.0899 0.0552 0.0110 0.2726

 .

To get the phenotypic variances and covariances between days 43 and 81,
for example, the standardized values would be

q43 = −.7466667

q81 = −.4933333

then the Legendre Polynomials for those two days are

L′ =

(
0.7071068 −0.9144762 0.5316843 0.1483803 −0.7548403
0.7071068 −0.6042075 −0.2133483 0.8228542 −0.5908374

)
.

Finally,

L′H5L =

(
14.23285 13.32235
13.32235 14.56514

)
.
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Thus, covariances can be calculated for any pair of days between 5 to 305 days.
Technically, the covariances can not be calculated between or with days that are
outside of the range of tmin or tmax, because their standardized time values would
be less than -1 or greater than +1. Another matrix of phenotypic covariances
would need to be obtained that covers 5 to 365 days in milk, or 400 DIM, de-
pending how far cows give milk in one lactation.

The standard of 305 days for an official lactation record was established
back in the 1930’s, but today cows produce a lot more milk and for a longer period
of time, such that the standard lactation length should probably be extended.
Test day models often allow TD records up to 365 days in milk to be included in
genetic evaluation, but the official standard length is still 305 days.

13.5 Fixed Regression Model

Ptak and Schaeffer (1993) analyzed test day records with a model similar
to the following:

ytijk = (b0 + b1X1 + b2X2 + b3X3 + b4X4)
+HTDj + ai + pi + etijk

where

ytijk is a 24 h TD milk yield in first lactation,

HTDj is a random herd-test date effect,

t is days in milk,

X1 = (t/305),

X2 = (t/305)2,

X3 = ln(305/t)

X4 = (ln(305/t))2

b0, b1, b2, b3, b4 are the fixed, overall mean regressions,

ai are the animal additive genetic effects,

pi are the animal permanent environmental effects, and

etijk is a random residual effect.



13.5. FIXED REGRESSION MODEL 193

In Ptak and Schaeffer (1993) the model had fixed regressions on days in
milk variables for eight age-season groups within first lactations. Of the four
test day models they compared, two had herd-year-season of calving effects, and
two had herd-test-day effects. Also, two models included covariances among the
residual effects between TD records on the same cow, and two models assumed
residual covariances were zero. The residual variances, however, were allowed to
vary with days in milk, using a quadratic regression on days.

σ2
et = 9.7− 0.072 t+ 0.0002 t2

The covariance matrices were

V ar(h) = Iσ2
h

V ar(a) = Aσ2
a

V ar(p) = Iσ2
p

V ar(e) = Iσ2
e

and σ2
a = 4, σ2

p = 1.6, σ2
h = 8, and σ2

e = 5.

13.5.1 Solutions and EBV

Data from Table 13.1 were analyzed with the fixed regression model. The
order of the MME was 32, (5 fixed regressions, 10 HTD effects, 12 animal genetic,
and 5 PE effects). The solutions were

b̂ =
(

33.3101 −34.7340 13.0129 −5.3289 0.3188
)

for the overall mean. To estimate the average yield on day 65, the covariates for
day 65 were 1, 0.213, 0.045, 1.546, and 2.390, respectively, thus

ŷ65 = 33.3101− 34.7340(0.213) + 13.0129(0.045)

−5.3289(1.546) + 0.3188(2.390)

= 19.02 kg

The HTD solutions were

( 3.136 − 0.116 − 0.299 0.624 1.489

−0.590 − 0.379 − 0.258 − 1.566 − 2.042 )
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The animal additive genetic and the animal PE solutions are given in Table 13.5.
Also, the EBV for the animals are obtained by multiplying the animal genetic
solutions times 301 (the number of days from 5 to 305). The EBV are also in
Table 13.6.

Table 13.5: Animal genetic and animal PE solutions from fixed regression test-day
model

Animal Genetic PE EBV
1 -0.979 0 -295
2 0.979 0 295
3 0.491 0 148
4 0.075 0 23
5 0.398 0 120
6 0.904 0 272
7 -1.868 0 -562
8 0.247 0.393 74
9 0.602 0.060 181
10 0.108 0.319 33
11 1.845 0.723 555
12 -3.291 -1.494 -991

In this model there is only one additive genetic value per animal which
represents differences in the heights of the lactation curves for each animal. The
shape of the curve was assumed to be the same for all cows, given by the overall
mean parameters.

13.6 Autoregressive Model

Following Carvalheira et al. (2002), the fixed regression model was mod-
ified by changing the PE effects into separate short term environmental (STE)
effects within each cow which have an autocorrelation amongst themselves. The
model can be written as

ytijkm = (b0 + b1X1 + b2X2 + b3X3 + b4X4)
+HTDj + ai + pik + etijkm

where

ytijkm is a 24 h TD milk yield in first lactation,
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HTDj is a random herd-test date effect,

t is days in milk,

X1 = (t/305),

X2 = (t/305)2,

X3 = ln(305/t)

X4 = (ln(305/t))2

b0, b1, b2, b3, b4 are the fixed, overall mean regressions,

ai are the animal additive genetic effects,

pik are the animal permanent environmental effects, and

etijkm is a random residual effect.

If p is the vector of short term environmental (STE) effects for all five
cows, then it has length 39 (one for each record), with expected value of null, and
covariance matrix that looks like

P =


F8 0 · · · 0
0 F9 · · · 0
...

...
. . .

...
0 0 · · · F12

σ2
p,

for cows 8 to 12, and where

Fi =



1 ρ ρ2 · · · ρn−2 ρn−1

ρ 1 ρ · · · ρn−3 ρn−2

ρ2 ρ 1 · · · ρn−4 ρn−3

...
...

...
. . .

...
...

ρn−2 ρn−3 ρn−4 · · · 1 ρ
ρn−1 ρn−2 ρn−3 · · · ρ 1


,

for a cow with n TD records. The inverse of an autocorrelation matrix has a
resulting tri-diagonal format. That is,
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F−1
i =

1

(1− ρ2)



1 −ρ 0 · · · 0 0
−ρ 1 + ρ2 −ρ · · · 0 0

0 −ρ 1 + ρ2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 + ρ2 −ρ
0 0 0 · · · −ρ 1


.

As in the fixed regression model, the covariance matrices were

V ar(h) = Iσ2
h

V ar(a) = Aσ2
a

V ar(p) = Pσ2
p

V ar(e) = Iσ2
e

and σ2
a = 4, σ2

p = 1.6, σ2
h = 8, and σ2

e = 5. We will assume that ρ = 0.80.

13.6.1 Solutions and EBV

Using data from Table 13.1, the MME in this example has order 66, (5
covariates for the overall mean, 10 HTD effects, 12 animal genetic effects, and 39
STE effects).

b̂ =
(

33.729 −34.741 12.899 −5.788 0.409
)
,

for the overall mean curve, and the HTD solutions were

( 3.145 0.020 − 0.203 0.629 1.460

−0.638 − 0.418 − 0.274 − 1.606 − 2.115 )

The short term environmental effects for each animal are given in Table
13.7.

The EBV for the fixed regression and autoregressive models are very sim-
ilar in this example. However, there is still only one animal additive genetic effect
being estimated per animal, which relates to the relative heights of the lactation
curves. The shape is assumed to be the same for each cow. The STE effects may
be an improvement over the fixed regression model, but depends on the validity of
assuming an autoregressive model. If one compares the correlations in the phen-
otypic covariance matrix with the autoregressive values, as in Table 13.8, then it
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Table 13.6: Animal genetic and animal PE solutions from fixed regression and
autoregressive test-day models

Fixed Regression Autoregressive
Animal Genetic EBV Genetic EBV

1 -0.979 -295 -1.108 -334
2 0.979 295 1.108 334
3 0.491 148 0.439 132
4 0.075 23 0.086 26
5 0.398 120 0.437 132
6 0.904 272 1.022 308
7 -1.868 -562 -1.985 -597
8 0.247 74 0.105 32
9 0.602 181 0.684 206
10 0.108 33 0.102 31
11 1.845 555 2.087 628
12 -3.291 -991 -3.531 -1063

Table 13.7: Short term environmental effects on five cows

HTD Cow 8 Cow 9 Cow 10 Cow 11 Cow 12
1 0.116 0.341 0.212
2 0.467 0.107 -0.021
3 1.030 -0.245 -0.322
4 1.018 -0.478 -0.125 0.677
5 0.956 -0.545 0.280 0.487
6 0.763 -0.415 0.383 0.460 -1.256
7 0.553 -0.227 0.379 0.334 -1.289
8 0.130 -0.069 0.355 -1.130
9 -0.296 0.066 0.394 -0.972
10 -0.408 0.145 0.389 -0.924

appears that the autocorrelation of 0.80 is almost suitable to describe V, but in
general, the autocorrelations are much smaller than the actual correlations.

The autoregression model requires estimation of one short term environ-
mental effect per TD record within an animal. This example assumed that σ2

p was
the same for each monthly interval. This variance could possibly be different for
each monthly interval, but the autocorrelation structure might still exist. Finally,
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Table 13.8: Comparison of correlations for milk yields on specific days in first
lactation, actual (above diagonals) versus autocorrelation (0.80) (below diagonals)

Days in Milk
5 35 65 95 125 155 185 215 245 275 305

5 1 0.78 0.53 0.43 0.37 0.32 0.32 0.27 0.27 0.26 0.20
35 0.80 1 0.73 0.73 0.67 0.61 0.55 0.55 0.49 0.47 0.40
65 0.64 0.80 1 0.81 0.81 0.81 0.75 0.69 0.62 0.61 0.53
95 0.51 0.64 0.80 1 0.88 0.81 0.81 0.75 0.75 0.67 0.59
125 0.41 0.51 0.64 0.80 1 0.88 0.81 0.81 0.81 0.73 0.65
155 0.33 0.41 0.51 0.64 0.80 1 0.81 0.81 0.81 0.73 0.65
185 0.26 0.33 0.41 0.51 0.64 0.80 1 0.88 0.88 0.79 0.71
215 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1 0.88 0.85 0.71
245 0.17 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1 0.85 0.77
275 0.13 0.17 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1 0.74
305 0.11 0.13 0.17 0.21 0.26 0.33 0.41 0.51 0.64 0.80 1

the autocorrelation works for fixed intervals between TD records, but the intervals
between TD within a herd are never exactly equal. How to correctly write the Fi

for the ith cow is not clear.

13.6.2 Multiple Lactations

Harville (1979) suggested that the cow’s permanent environmental effect
might be a first-order autoregressive process from one lactation to the next. This
is similar to the cumulative PE model described in Chapter 10, except that the
PE effects are now correlated between lactations rather than independent and
cumulative. The PE effects between lactations can be viewed as long term envir-
onmental effects (LTE), and then STE effects within each lactation and within
cow. Both of these factors could have autocorrelation structures, with different
correlation values. Thus, there would be a PE estimate for each lactation on the
cow, and then a STE estimate for each TD record within a lactation. The number
of equations could become very large.

13.7 Ali-Schaeffer RRM

The Ali and Schaeffer (1987) covariates will be used to analyze the data
in Table 13.1. The cows were all in one herd, and there were 10 test dates. To
simplify matters, the cows’ records are assumed to be perfectly adjusted for age
and month of calving, and are all in the same year. The model might be
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ytijk = (b0 + b1X1 + b2X2 + b3X3 + b4X4)
+HTDj

+(a0i + a1iX1 + a2iX2 + a3iX3 + a4iX4)
+(p0i + p1iX1 + p2iX2 + p3iX3 + p4iX4)
+etijk

where

ytijk is a 24 h TD milk yield in first lactation,

HTDj is a random herd-test date effect,

t is days in milk,

X1 = (t/305),

X2 = (t/305)2,

X3 = ln(305/t)

X4 = (ln(305/t))2

b0, b1, b2, b3, b4 are the fixed, overall mean regressions,

a0i, a1i, a2i, a3i, a4i are the animal additive genetic random regressions,

p0i, p1i, p2i, p3i, p4i are the animal permanent environmental random regressions ,
and etijk is a random residual effect.

Let the HTD effects have covariance matrix Iσ2
h, and within an animal,

V ar


a0i

a1i

a2i

a3i

a4i

 = G

where G has order 5, and across animals is

V ar(a) = A
⊗

G

where
⊗

is the direct product of two matrices, each element of A times the entire
matrix G. Similarly,

V ar(p) = I
⊗

P

for the permanent environmental effects. The residual variance will be assumed to
be constant throughout the lactation. In practice, however, the residual variance
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changes through the lactation, such that there could be a different variance for
each DIM. We will assume that the residual variances are independent from day
to day.

The initial problem is how to find a G and P matrix when such an analysis
has not been attempted previously. Start with the matrix V given in Table
13.2. Assuming heritability is 0.25, then a matrix of additive genetic variances
and covariances for those 11 days in milk would be Vg = 0.25 ×V. Instead of
making Φ as with Legendre polynomials, make a matrix of order 11 by 5 with
the appropriate covariates from the above model, as shown in the following table
(Table 13.9).

Table 13.9: Covariates for Variance Model

DIM X0 X1 X2 X3 X4

5 1 0.01639344 0.0002687450 4.1108739 16.89928393
35 1 0.11475410 0.0131685031 2.1649637 4.68706789
65 1 0.21311475 0.0454178984 1.5459245 2.38988258
95 1 0.31147541 0.0970169309 1.1664349 1.36057034
125 1 0.40983607 0.1679656006 0.8919980 0.79566050
155 1 0.50819672 0.2582639076 0.6768867 0.45817555
185 1 0.60655738 0.3679118517 0.4999560 0.24995595
215 1 0.70491803 0.4969094329 0.3496737 0.12227173
245 1 0.80327869 0.6452566514 0.2190536 0.04798446
275 1 0.90163934 0.8129535071 0.1035407 0.01072067
305 1 1.00000000 1.0000000000 0.0000000 0.00000000

If the above matrix is B, then

Vg = 0.25×V

Vg = BGB′

G = (B′B)−1B′VgB(B′B)−1

=


783.40 −1251.74 483.64 −431.55 59.15

−1251.74 2032.57 −801.16 688.39 −94.25
483.64 −801.16 326.74 −264.17 36.06
−431.55 688.39 −264.17 239.86 −32.98

59.15 −94.25 36.06 −32.98 4.55


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Now compute the correlations among the elements of G giving

Cg =


1 −0.9920 0.9559 −0.9955 0.9904

−0.9920 1 −0.9831 0.9859 −0.9799
0.9559 −0.9831 1 −0.9437 0.9351
−0.9955 0.9859 −0.9437 1 −0.9981

0.9904 −0.9799 0.9351 −0.9981 1

 .

Notice the many correlations that are close to -1 or +1. Such a matrix can lead to
estimation problems in the MME due to the high dependency between covariates.
For example, an iterative solution program could take a very long time to converge
to a solution.

If repeatability is .35, and using the same B as for finding G, then

Vp = 0.10×V

Vp = BPB′

P = (B′B)−1B′VpB(B′B)−1

=


313.36 −500.70 193.46 −172.62 23.66
−500.70 813.03 −320.46 275.36 −37.70

193.46 −320.46 130.69 −105.67 14.43
−172.62 275.36 −105.67 95.94 −13.19

23.66 −37.70 14.43 −13.19 1.82


The resulting correlation matrix is the same as that for G due to that both

G and P were derived from multiples of V.

13.7.1 MME and Solutions

The X matrix for this model has 39 rows (because there are 39 TD records)
and 5 columns for the five Ali and Schaeffer covariates. The design matrix for
HTD effects is 39 by 10, containing zeros and one 1 in each row for the appropriate
HTD number. The design matrix for animal genetic effects has 39 rows and 60
columns (12 animals times 5 covariates each). The animal PE design matrix has
39 rows and 25 columns (only 5 animals with records and 5 covariates each). In
total there are 100 equations in MME. The assumptions were that σ2

h was 8, and
σ2
e was 5. Additive genetic relationship matrix inverse was used. The resulting

solutions were

b̂ =
(

42.547 −48.853 18.412 −10.869 1.148
)
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for the overall mean. Thus, an estimate of an average yield on day 65 (using
covariates from Table 13.7.1) would be

ŷ65 = 42.547− 48.853(0.213) + 18.412(0.045)

−10.869(1.546) + 1.148(2.390)

= 18.91kg

The HTD solutions were ( 2.998 ; 0.088 ; -0.234 ; 0.438 ; 1.526 ; -0.325 ;
-0.307 ; -0.283 ; -1.686 ; -2.215 ) for HTD 1 to 10, respectively.

The animal additive genetic solutions are given in Table 13.10, and the
solutions for animal PE effects are in Table 13.11.

Table 13.10: Animal Genetic Random Regression Solutions

Animal a0i a1i a2i a3i a4i

1 10.255 -16.813 5.828 -6.290 0.843
2 -10.255 16.813 -5.828 6.290 -0.843
3 4.519 -5.166 0.616 -2.185 0.261
4 -5.362 7.480 -1.998 3.110 -0.414
5 3.228 -5.316 2.483 -1.587 0.210
6 -4.893 9.334 -3.831 3.180 -0.429
7 2.509 -6.332 2.729 -2.517 0.372
8 11.906 -16.155 3.838 -6.422 0.813
9 -13.171 19.626 -5.910 7.810 -1.043
10 9.970 -16.381 6.638 -5.526 0.736
11 -12.467 22.407 -8.660 7.914 -1.064
12 8.891 -17.904 7.008 -6.921 0.979

13.7.2 EBV for 305-d Yields

The regression coefficients can not be used, easily, to determine the best
cows and sires. The solutions need to be converted to a 305-d basis.

To do that, we need:
∑305

i=5X0 = 301.0000,
∑305

i=5X1 = 152.9672,
∑305

i=5X2

= 102.1669,
∑305

i=5X3 = 281.5174,
∑305

i=5X4=482.9813.
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Table 13.11: Animal PE Random Regression Solutions

Animal p0i p1i p2i p3i p4i

8 3.615 -4.133 0.493 -1.748 0.209
9 -4.290 5.984 -1.598 2.488 -0.331
10 2.582 -4.253 1.986 -1.270 0.168
11 -3.915 7.467 -3.065 2.544 -0.343
12 2.007 -5.065 2.184 -2.014 0.298

For sire 1, for example, his 305-d milk EBV is

EBV1 = 301(10.255)− 152.9672(16.813) + 102.1669(5.828)

−281.5174(6.290) + 482.9813(0.843)

= −253.06kg kg

The same constants are used with the regression solutions of each animal.
The resulting EBV are given in table 13.12:

Table 13.12: Animal EBVs from different models

Animal Fixed Reg. Autoreg. A&S
1 -295 -334 -253
2 295 334 253
3 148 132 144
4 23 26 1
5 120 132 67
6 272 308 252
7 -562 -597 -464
8 74 32 89
9 181 206 129
10 33 31 -27
11 555 628 504
12 -991 -1063 -822
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13.8 Legendre Polynomial RRM

Legendre polynomials are used for the covariates in this test day model.
The model equation is identical to the first test day model.

Table 13.13: Covariates for Variance Model

DIM X0 X1 X2 X3 X4

5 0.7071 -1.2247 1.5811 -1.8708 2.1213
35 0.7071 -0.9798 0.7273 -0.1497 -0.4943
65 0.7071 -0.7348 0.0632 0.6735 -0.8655
95 0.7071 -0.4899 -0.4111 0.8232 -0.2397
125 0.7071 -0.2449 -0.6957 0.5238 0.4921
155 0.7071 0.0000 -0.7906 0.0000 0.7955
185 0.7071 0.2449 -0.6957 -0.5238 0.4921
215 0.7071 0.4899 -0.4111 -0.8232 -0.2397
245 0.7071 0.7348 0.0632 -0.6735 -0.8655
275 0.7071 0.9798 0.7273 0.1497 -0.4943
305 0.7071 1.2247 1.5811 1.8708 2.1213

If the above matrix is Φ, then assuming h2 = 0.25 as before, and Vg =
0.25×V, then

Vg = ΦGΦ′

G = (Φ′Φ)−1Φ′VgΦ(Φ′Φ)−1

=


6.0050 0.2172 −0.4186 0.1411 −0.1193
0.2172 0.8720 −0.1859 0.0085 −0.0225
−0.4186 −0.1859 0.3581 −0.0914 0.0138

0.1411 0.0085 −0.0914 0.1704 0.0028
−0.1193 −0.0225 0.0138 0.0028 0.0682

 ,
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and the correlations among the elements of G are

Cg =


1.00 0.09 −0.29 0.14 −0.19
0.09 1.00 −0.33 0.02 −0.09
−0.29 −0.33 1.00 −0.37 0.09

0.14 0.02 −0.37 1.00 0.03
−0.19 −0.09 0.09 0.03 1.00

 .

With Legendre Polynomials, which are orthogonal over the entire range (-1 to +1),
the correlations are much smaller than with the Ali and Schaeffer function. This
leads to better estimation of EBV and covariance components from this analysis.
Convergence to solutions for EBV is not delayed due to a high dependency between
covariates.

Repeatability is 0.35, then Vp = 0.10 ×V, and using the same Φ as for
finding G, then

P =


2.4020 0.0869 −0.1674 0.0564 −0.0477
0.0869 0.3488 −0.0744 0.0034 −0.0090
−0.1674 −0.0744 0.1432 −0.0365 0.0055

0.0564 0.0034 −0.0365 0.0681 0.0011
−0.0477 −0.0090 0.0055 0.0011 0.0273


The resulting correlation matrix is the same as that for G because both

G and P were derived from multiples of V.

13.8.1 MME and Solutions

The X matrix consists of order 5 Legendre Polynomials (LP) for the DIM
on which the TD records were made. In practice, one would construct a table of
LP for days 5 through 305, then if a TD record occurs on day 14, just pick out
the row for day 14. (NOTE: In the example data, the first record is made on day
4, this was changed to day 5 to fit the Legendre polynomials for days 5 to 305).
The design matrix for additive genetic and PE effects use the same LP as in X.
The dimensions of the matrices are the same as in the previous test day model.

Again, the assumed variances were σ2
h = 8, and σ2

e = 5. The additive
genetic relationship matrix inverse was used. The resulting solutions were

b̂ =
(

22.212 −3.239 −0.254 0.820 −0.620
)

for the overall mean. An estimate of an average yield on day 65 (using LP cov-
ariates from Table 13.13) would be



206 CHAPTER 13. TEST DAY MODELS

ŷ65 = 22.212(0.7071) + 3.239(0.7348)− 0.254(0.0632)

+0.820(0.6735) + 0.620(0.8655) = 19.16 kg

The HTD solutions were

(3.069 0.221 − 0.341 0.411 1.504

−0.460 − 0.248 − 0.432 − 1.779 − 1.945)

for HTD 1 to 10, respectively.
The animal additive genetic solutions are given in Table 13.14, and the

solutions for animal PE effects are in Table 13.15.

Table 13.14: Animal Genetic Random Regression Solutions

Animal a0i a1i a2i a3i a4i

1 -1.168 0.163 -0.239 0.148 -0.036
2 1.168 -0.163 0.239 -0.148 0.036
3 0.679 -0.158 -0.302 0.127 -0.042
4 -0.017 -0.055 0.204 -0.081 0.023
5 0.324 0.030 0.040 0.042 -0.019
6 1.185 -0.107 0.035 -0.067 0.013
7 -2.170 0.291 0.023 -0.021 0.025
8 0.434 -0.156 -0.573 0.264 -0.081
9 0.559 -0.164 0.425 -0.195 0.053

10 -0.098 0.126 -0.059 0.137 -0.047
11 2.361 -0.242 0.172 -0.175 0.037
12 -3.839 0.518 -0.086 0.043 0.020

13.8.2 EBV for 305-d Yields

The solutions need to be converted to a 305-d basis. To do that we need
the sum of the LP covariates from 5 to 305 days, as shown below:∑305

i=5X0 = 212.8391 ,
∑305

i=5X1 = 0.0000 ,
∑305

i=5X2 = 1.5864 ,∑305
i=5X3 = 0.0000,

∑305
i=5X4 = 2.1449.
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Table 13.15: Animal PE Random Regression Solutions

Animal p0i p1i p2i p3i p4i

8 0.543 -0.126 -0.242 0.101 -0.034
9 -0.014 -0.044 0.163 -0.064 0.019
10 0.259 0.024 0.032 0.034 -0.015
11 0.948 -0.086 0.028 -0.054 0.010
12 -1.736 0.233 0.018 -0.017 0.020

For sire 1, for example, his 305-d milk EBV is

EBV1 = 212.8391(−1.168) + 1.5864(−0.239) + 2.1449(−0.036)

= −249 kg

The same constants are used with the regression solutions of each animal.
The resulting EBV are

Table 13.16: Animal EBVs from different models

Animal Fixed Reg. Autoreg. A&S LP
1 -295 -334 -253 -249
2 295 334 253 249
3 148 132 144 144
4 23 26 1 -3
5 120 132 67 69
6 272 308 252 252
7 -562 -597 -464 -462
8 74 32 89 91
9 181 206 129 120
10 33 31 -27 -21
11 555 628 504 503
12 -991 -1063 -822 -817

13.9 Spline Function RRM

Take the G matrix from the LP test day model in the previous section.
From that we can estimate the genetic variance for every day in the lactation from
day 5 to day 305 using the LP covariates for each day. If we plot those variances
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we obtain the following figure (Figure 13.4).

Figure 13.4
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Notice the higher genetic variances at the beginning and at the tail of
lactation. These are not the true genetic variances, but are known as artifacts
created by the polynomial nature of the model. What is more important is the G
matrix which describes the variation in the genetic regression coefficients among
animals. However, some researchers are offended by the artifacts as in the above
figure.

Spline functions (segmented polynomials) have been suggested to replace
LPs. The lactation is divided into sections by locations known as “knots”. The pro-
duction between any two knots is assumed to be changing linearly. The challenge
is to determine the number of knots and where they should be placed throughout
the lactation (Jamrozik et al. 2010). The more knots used the better the fit of
the models, but more unknowns give more parameters to estimate per animal.
Their study looked at 4 to 7 knots. In this example, we will use 5 knots, and the
locations founded in their study. Namely, T1 = 7, T2 = 54, T3 = 111, T4 = 246,
and T5 = 302,

Let t be a particular days in milk between 4 and 305, and Ti represent
the five knots, for this example, then the covariates, xi for the spline function are
determined as follows:

• If t < T1, then x1 = t/T1 and other xi for i > 1 are zero.
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• If t > T5, then x5 = T5/t and other xi for i < 5 are zero.

• If Ti < t < Ti+1, then

xi = (t− Ti)/(Ti+1 − Ti)

xi+1 = (Ti+1 − t)/(Ti+1 − Ti)

and the other covariates are zero.

Thus, there are at most two non-zero covariates per days in milk, which gives
spline functions some computational advantages. An example of the covariates
are given in the following table (13.17), for the 11 days represented in V.

Table 13.17: Spline Function Covariates for Particular DIM

Day X0 X1 X2 X3 X4

5 0.7143 0 0 0 0
35 0.5957 0.4043 0 0 0
65 0 0.1930 0.8070 0 0
95 0 0.7193 0.2807 0 0
125 0 0 0.1037 0.8963 0
155 0 0 0.3259 0.6741 0
185 0 0 0.5481 0.4519 0
215 0 0 0.7704 0.2296 0
245 0 0 0.9926 0.0074 0
275 0 0 0 0.5179 0.4821
305 0 0 0 0 0.9902

If we let X represent the table of covariates above (Table 13.17), in matrix
notation, then note that

X′X =


0.8651 0.2408 0 0 0
0.2408 0.7181 0.3576 0 0

0 0.3576 2.7262 0.7446 0
0 0 0.7446 1.7829 0.2497
0 0 0 0.2497 1.2129


which is a tri-diagonal matrix, which can be used to advantage in setting up and
solving MME.

The derivation of the appropriate G and P follows as before. Assuming
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h2 = 0.25 as before, and Vg = 0.25×V, then

Vg = XGX′

G = (X′X)−1X′VgX(X′X)−1

=


8.3229 2.3771 2.1918 2.0917 1.4394
2.3771 4.9380 2.6510 3.4222 1.9740
2.1918 2.6510 3.4241 3.2226 3.0439
2.0917 3.4222 3.2226 3.8411 2.7010
1.4394 1.9740 3.0439 2.7010 4.5052

 ,

and Vp = 0.10×V assuming repeatability of 0.35. Thus,

P =


3.3292 0.9508 0.8767 0.8367 0.5757
0.9508 1.9752 1.0604 1.3689 0.7896
0.8767 1.0604 1.3696 1.2890 1.2176
0.8367 1.3689 1.2890 1.5364 1.0804
0.5757 0.7896 1.2176 1.0804 1.8021

 .

13.9.1 Solutions and EBV

The solutions for the overall means represent the average yield at the
location of the knots.

µ̂ = (18.67 17.79 16.12 14.88 12.98 ).

The solutions for herd-testdays were

(4.99 1.14 1.32 − 0.01 1.87

−0.63 − 0.86 − 1.44 − 2.37 − 2.96)

The additive genetic solutions are shown in Table 13.18. Note that the solutions
are similar, but not the same, for each knot, meaning that their production was
consistently above or below the overall means.

The animal PE solutions are in Table 13.19.
The sum of the spline function covariates over days 4 to 305 give

(26.1429 52 96 95.5 31.48028),

which represent the average number of days between the knots. These numbers
are multiplied times the animal genetic solutions to give a 305-d EBV, as shown
in the last column of Table 13.20
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Table 13.18: Animal Genetic Solutions for Spline Function RRM

Animal a0i a1i a2i a3i a4i

1 -1.396 -0.719 -0.800 -0.777 -0.853
2 1.396 0.719 0.800 0.777 0.853
3 0.323 0.911 0.377 0.568 -0.209
4 0.374 -0.297 -0.257 -0.332 -0.037
5 -0.262 -0.160 -0.398 -0.386 -0.109
6 1.022 1.016 1.057 1.109 0.889
7 -1.457 -1.470 -0.779 -0.959 -0.534
8 -0.213 1.006 0.165 0.464 -0.740
9 1.259 -0.085 0.014 -0.110 0.371
10 -1.091 -0.600 -0.996 -0.967 -0.590
11 2.230 1.884 1.986 2.051 1.760
12 -2.883 -2.565 -1.569 -1.827 -1.228

Table 13.19: Animal PE Solutions for Spline Function RRM

Animal p0i p1i p2i p3i p4i

8 0.258 0.729 0.301 0.455 -0.167
9 0.299 -0.237 -0.206 -0.266 -0.029
10 -0.210 -0.128 -0.318 -0.309 -0.087
11 0.817 0.813 0.846 0.887 0.711
12 -1.165 -1.176 -0.623 -0.767 -0.427

The EBVs from the spline function RRM are very different from the pre-
vious RRM that utilize smooth functions. This suggests that possibly more knots
are required, which increases the number of parameters to estimate per animal.
Five knots are not enough to capture the curves in the lactation curve shape.
Jamrozik et al. (2010) suggest that at least 7 knots are needed, but that more
knots significantly increase the computing cost.

13.10 Multiple Trait RRM

Most applications of RRM have been multiple trait systems. In Canada,
there are the first two lactations and third and later lactations, and within each
of those includes milk, fat, and protein yields, and somatic cell scores giving 12
traits. Each trait has 5 LP covariates, giving 60 parameters for the additive
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Table 13.20: Animal EBVs from different models

Animal Fixed Reg. Autoreg. A&S LP Spline
1 -295 -334 -253 -249 -252
2 295 334 253 249 252
3 148 132 144 144 140
4 23 26 1 -3 -63
5 120 132 67 69 -94
6 272 308 252 252 315
7 -562 -597 -464 -462 -298
8 74 32 89 91 84
9 181 206 129 120 31
10 33 31 -27 -21 -266
11 555 628 504 503 598
12 -991 -1063 -822 -817 -572

genetic effects, and 60 for the animal permanent environmental effects.
Clearly first lactations have a lactation shape that does not peak as high as

later lactations, and first lactation is usually more persistent, more slow to decline
in yield than later lactations. Lactations 2 and 3 were kept separate because it was
not known how different those two lactations could be when the research began.
Combining later lactations with third lactations seemed appropriate because cows
average 3.5 lactations in Canada, so that there would be many fewer lactations
after third lactation. Also, the shape of later lactations were similar to those of
lactation three. Lactations greater than 5 were omitted from genetic evaluations
because production levels in those lactations decreases.

If lactations 4 and 5 were also separated, then there would be too many
parameters per animal to estimate, and many of those would be based on the
assumed genetic correlations between lactations.

Genetic parameters were estimated from subsets of the data in which cows
had at least 7 TD records per lactation, in the first three lactations. Bayesian
methods were used employing Gibbs Sampling procedures. Many months of com-
puting were spent to obtain the estimated covariance matrices.

13.11 Lifetime Production RRM

Jensen (2001) discussed a lifetime production RRM, in which TD milk
yields in any lactation, for example, were modelled with covariates across lacta-
tions and within lactations. The across lactation covariates would account for
intervals between lactations, for days not pregnant, and gestation lengths. The
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results would give EBV for milk yield for each lactation, but also an EBV for milk
yield over the cow’s lifetime.

The goal of a lifetime production RRM would be to include all lactations
on every cow. After accounting for the first five lactations, additional lactations
would only add another 20% of TD records. Thus, is it worthwhile to build a
more complex model in order to add in more TD records on animals which are
too old to matter?
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Chapter 14

Genetic Change

HORIA GROSU
P. A. OLTENACU

14.1 Introduction

The success or failure of a breeding program is measured by an estimate
of genetic trend in the population. Estimates are needed to justify the usefulness
of genetic evaluations, and therefore, the justification of new methodologies. The
average performance of a population can change over years due to genetic and
environmental causes. The change due to the environment can be caused by the
changes in feeding and management technologies, and in the health status of the
herd. Individual performance also changes due to ageing. The task of separating
genetic and environmental causes became a concern early in dairy cattle breeding.

Prior to 1950, there were no procedures that could separate the genetic
change, (g), and the environmental change, (t), from the total change. After 1950,
the average performance of a selected population could be compared to an un-
selected control population. Such procedures were particularly suitable for small
species, such as poultry and pigs (Goodwin at al., 1955; Gowe at al., 1959; Dicker-
son, 1960; cited by Smith, 1962). For larger species, the use of control populations
was economically impractical. The maintenance of control populations was too
expensive, although some were attempted in Minnesota, USA and elsewhere in
university research herds. Instead, the advantages provided by artificial insem-
ination (AI) were used for these species. In cattle, the measurement of genetic
trend was done by processing field records. The methodology consisted in the
comparison, under similar environmental conditions, of contemporary daughters
obtained with frozen semen from the sires which were active several generations

215
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back, with the daughters from the younger sires currently used for breeding. The
difference between the average performances of the two categories of daughters
reflected half of the genetic gain.

Comparisons could also be done between AI and Natural Service (non-AI)
(NS) bulls (Van Vleck and Henderson, 1961). The first attempts to measure the
effect of selection in cattle were those of Lorthscher (1937) and Nelson(1943; cited
by Rendel and Robertson, 1950), who quantified the genetic change of the popula-
tion by considering dam performance in successive years. The result may measure
the change due to the environment which, subtracted from the total change, gives
an estimate of the genetic trend for that particular trait. The performance of
the same cows will differ, however, in successive years, due to the genetic factor
and to other factors with systematic effects, such as environmental (feeding) or
biological (cow age) factors. This presumes that before any comparison is done
between successive years, cows’ performance records must be standardized to a
mature equivalent basis, i.e., to a standard age. This implies the use of correc-
tion factors. This approach was criticised, however, at that time, because the
correction factors for age were mistaken for age effects and because the errors
associated with the estimation of the correction factors would bias the measure
of the genetic gain (Rendel and Robertson, 1950). The conclusion was that the
estimates of genetic gain were biased because improper correction factors were
used. Elston (1959, cited by Smith, 1962) estimated the effects of selection by
measuring the change in the average sire effect in relation with time.

14.2 Comparison to Non-AI Sired Daughters

Van Vleck and Henderson (1961) proposed the use of Least Squares (LS)
to measure genetic gain in milk yield achieved from 1951 to 1958 in New York
state. For that, they used field records from both AI and non-AI cows which
completed their first lactations in the same farm-year-season. The results showed
that during the considered period, the genetic gain was 7.71 kg for fat yield and
181 kg for milk yield for natural service cows, and was 11.4 kg fat and 232.2 kg
milk yield for AI cows.

According to Van Vleck and Henderson (1961), the first lactation perform-
ance of a cow with records adjusted to a mature equivalent basis can be described
by the following biometric model:

yijkp = µ+ hi + sj +mk + eijkp,

where

yijkp is first lactation performance of a daughter, in farm i, year-season k, by cow
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p, daughter of sire j,

µ is the population average,

hi is the farm effect,

sj is the sire effect,

mk is the year-season effect, and

eijkp is the residual effect.

The first step in the procedure was to calculate the mean differences of
an AI sired daughter average from the average of non-AI sired daughters within
farm-year-seasons. Let

y1ijk be the average of n1ijk AI sired daughters of sire j, in farm-year-season ik,

y2i.k be the average of n2i.k non AI sired daughters in farm-year-season ik, then

dijk is y1ijk − y2i.k, and

wijk is (n1ijkn2i.k)/(n1ijk + n2i.k).

Below is a table (14.1) of data for one sire with progeny in 3 farms all
within year-season 1.

Table 14.1: Example data for one sire, one year-season, 3 farms

Farm No. Dau. Non-AI Non-AI
daus. Ave. daus. Ave. wijk dijk

1 2 15 3 5 1.20 5
2 1 18 3 8 0.75 10
3 1 12 2 7 0.67 5

Totals 4 8 2.62

The weighted difference for this year-season and sire would be

d.jk =

∑
i(wijkdijk)∑

iwijk

or
d.jk =

1.20(5) + 0.75(10) + 0.67(5)

1.20 + 0.75 + 0.67
=

16.85

2.62
= 6.43
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This is computed for every AI sire and year-season. Suppose the results
for 3 AI sires and 4 year-seasons are as shown in Table 14.2.

Table 14.2: Example weights and differences for 3 sires in 4 year-seasons

Year-Seasons Sire Total
Sire 1 2 3 4

∑
k(w.jkd.jk)

1 6.43 (2.62) 7.00 (3.00) 7.50 (2.50) 0 (0) 56.60
2 0 (0) 5.25 (1.75) 6.66 (1.33) 8.00 (3.33) 44.69
3 4.00 ( 1.00) 6.00 (2.00) 0 (0) 5.00 (1.33) 22.65

Season
Totals∑
j(w.jkd.jk) 20.85 42.19 27.61 33.29

where 6.43 and 2.62 have the follwing significances: d.jk = 2.62 and w.jk =
6.43

Below we illustrate how the numbers 2.62 and 6.43 in the above table were
calculated, for sire 1, in year-season 1. Let’s consider that this sire has 4 daughter
spread in three herds (Table 14.3).

Table 14.3: Example to estimate actual number of daughters, for sire 1, in year-
season 1

Herd Number of Number of Actual number Difference between the
daughters contemporaries of daughters daughters and
(A.I.) (non-A.I.) (w.jk ) the contemporaries

dijk=y1ijk-y2ijk

1 2 3 1.2 d111=15-10=5
2 1 3 0.75 d211=18-8=10
3 1 2 0.67 d311=12-7=5

Total 4 8 w.jk=2.62

The weighted average difference of sire 1, for season 1, determined from
its daughters and contemporaries grouped in the three farms are 6.43 lb.

The next step is to construct LS equations for AI sires and year-seasons,
as follows: (

D C
C′ W

)(
s
m

)
=

(
r1

r2

)
,
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where (using numbers from Table 14.2)

D =

 (2.62 + 3 + 2.5) 0 0
0 (1.75 + 1.33 + 3.33) 0
0 0 (1 + 2 + 1.33)

 ,

C =

 −2.62 −3.00 −2.50 0.00
0.00 −1.75 −1.33 −3.33
−1.00 −2.00 0.00 −1.33

 ,

W =


(2.62 + 1) 0 0 0

0 (3 + 1.75 + 2) 0 0
0 0 (2.5 + 1.33) 0
0 0 0 (3.33 + 1.33)

 ,

r1 =

 56.60
44.69
22.65

 ,

and

r2 =


20.85
42.19
27.61
33.29

 .

These equations have a dependency, therefore, one restriction is necessary, which
can be imposed by eliminating one equation, or by adding an equation that would
force the sum of the year-season solutions to be zero.

Van Vleck and Henderson (1961) describe how to absorb the sire equations
into the year-season equations, thus,

S = W −C′D−1C,

and
t2 = r2 −C′D−1r1,

then a solution is
m̂ = S−t2

using a generalized inverse of S. One possible solution vector is

m̂ =


80.996
70.464
75.535
0.000

 .
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Then solutions for each of the sires is obtained by

ŝ = D−1(r1 −Cm̂) =

 82.40
41.88
56.48

 .

Thus, the change in non-AI sire merit from year-season 1 to year-season
4 was m̂4 − m̂1 = −80.996. The solutions for AI sires have the non-AI sire
averages removed, and thus, a weighted average of the AI sire solutions within
year-seasons gives the averages per year-season, as shown below (Table 14.4).

Table 14.4: Trend in AI sires over year-seasons

Year-
Season

1 [2.62(82.40)+1(56.48)]/3.62= 75.24
2 [3(82.40)+1.75(41.88)+2(56.48)]/6.75= 64.21
3 [2.5(82.40)+1.33(41.88)]/3.83= 68.33
4 [3.33(41.88)+1.33(56.48)]/4.67= 45.95

The amount of genetic change was in a negative direction for this trait.
Some of the assumptions of the previous method were that the non-AI

sires were random samples of all non-AI sires in each farm-year-season subclass.
All sires were randomly mated to dams within year-seasons. This method would
have become less reliable over time as the percentage of cows in a farm-year-season
that were from non-AI sires became less. Today a very large percentage of cows
are from AI sires, and there could be herds without any non-AI sired daughters.

14.3 Regressions of Performance on Time

Most studies conducted on dairy cattle relied on production data from
commercial farms. In this case, one of the most used methods was proposed
by Smith (1962), who showed that genetic trend can be measured by within-
sire regression of performance on time or from differences in the means with time.
Several modifications have been proposed to the method of Smith (1962) to reduce
biases in genetic trend estimates (Burnside, et. al., 1967; Everett, R. W., et. al.,
1967; Harville, D. A., and C. R. Henderson. 1967; Powell, R. L., and A. E.
Freeman. 1974; Rothschild, M. F., and C. R. Henderson. 1979).

Smith (1962) showed that when genetic trend is measured using field re-
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cords, sires have progeny with a wide distribution over time (years-seasons) and
over space (different farms), which ensures genotype continuity and allows quan-
tifying genetic change. Thus, if in a year, the total change in the population is
(g+ t), then, for a random bull, considering that the mates are a random sample,
the change in the successive groups of progeny will be (0.5∗g+ t). Assuming that
genetic change in the population is g, for a particular bull, the genetic change in
its progeny during one year is 0.5g, assuming that the genetic value of the bull
is a constant. Thus, the difference [(g + t) − (0.5 ∗ g + t)] measures half of the
genetic gain achieved in that year.

On the basis of these principles, Smith (1962) proposed two approaches to
measure annual genetic gain:

1. Measuring the effect of selection by regression of the performance on time:

2(bPT − bST )

where bPT is the linear regression of the average population performance on
time, while bST is the within sire regression of progeny performance on time.
In order to eliminate the influence of the annual environmental fluctuations,
Smith proposed that the within sire regression on time is calculated from
the difference between the average of the populations and those of the sire
families.

2. Measuring the effect of selection by the differences between averages in time:

2[(XTy −XSy)− (XT0 −XS0)]

y
,

where XT i is the population mean in year i and XSi is a sire family mean
in year i, and y is a given number of years.

The procedure of Smith (1962) has been applied in pigs, in order to
quantify the genetic change over time for growth and carcass quality traits. Most
subsequent studies conducted on dairy cattle used Smith’s regression methodo-
logy or variants of it. These approaches are based on the following expectations
of regressions:

E(bPT ) = g + t (14.1)
E(bPT/S) = 0.5g + t (14.2)

E(b(P−P )T/S) = −0.5g (14.3)

E(bPT/SD) = t (14.4)

The total trend bPT is measured by the regression of the performance (P) on time
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(T). The expected value of the within sire regression (bPT/S) is only (0.5g + t),
because the sire is common for all progeny, and thus its genetic merit is a constant,
and only the dams contribute to the genetic gain.

The expected value of the within sire regression on time, calculated on the
basis of the differences between the individual performances and the population
average (P − P ), and b(P−P )T/S , respectively.

Finally, the regression of within sire and within dam performance on time
includes only the environment component (t), because the progeny have the same
known parents and thus their parent average breeding values are expected to be
the same. From the first 3 equations we may obtain the formulas quantifying
genetic trend (g), as follows:

ĝ = 2(bPT − bPT/S) (14.5)
ĝ = bPT − bPT/SD (14.6)
ĝ = −2(b(P−P )T/S) (14.7)

These relations are valid provided that we have

1. random mating of sires to dams;

2. no culling of dams;

3. no differential mating of dams according to age or genetic ability, and

4. no maternal effects for the production trait.

If deviations from these assumptions occur, the formulas must be corrected in
order to produce estimates with higher accuracy.

Everett et al. (1967) made a first attempt to modify these equations. Their
purpose was to test the method of Smith (1962), with slight changes, in order
to determine the accuracy of measuring genetic trend. The authors introduced
corrections for the effect of culling and age of dam effect.

If the bulls are mated to older dams, the estimates of g will be biased.

E(bPT ) = t + g(1 − 0.5 bDAT ) (14.8)
E(bPT/S) = t + g(1 − bDAT/S)/2 (14.9)

where bDAT is the regression of age of dam on time, and bDAT/S is the regression
within sire of age of dam on time. The difference

bDAT/S − bDAT
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is a measure of the within herd non-random assignment of cows to sires. This is
also true when bulls are mated to younger dams.

With these modifications, Everett et al. (1967) quantified genetic trend
using the following equation:

2 (bPT − bPT/S) = g(1 − bDAT + bDAT/S) (14.10)

ĝ =
2(bPT − bPT/S)

1 − bDAT + bDAT/S
(14.11)

In a study of 1,556 first lactation cows, Everett et al. (1967) presented
estimates for milk production of

bDAT = 0.012

bDAT/S = 0.533

bPT = 59.3 kg

bPT/S = −47.7 kg

ĝ =
2(59.3− (−47.7))

1− 0.012 + 0.533
= 140.70 kg

When the effect of culling on dams is significant, a correction is needed for
the regression of progeny performance over time within sire as follows:

bPT/S = (t + g(1 − bDAT/S)/2)−∆C

where ∆C shows the additive genetic superiority due to dams culled over time.
The value is given by the difference between the regression of daughters’ per-
formances (total trend) and the within sire regression of dams’ production on
time:

∆C = 0.5(bPT − bDPT/S)

where bDPT/S was estimated by Everett et al. (1967) to be 170.2 kg, and thus

∆C = 0.5(59.3− 170.2) = −55.45kg.

The 0.5 appears in the formula because dams contribute half their genes to the
progeny. Therefore, the new value of bPT/S is

bPT/S = −47.7−∆C = +7.75kg.
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Finally, the estimate of annual genetic trend is

ĝ =
2(59.3− 7.75)

1− 0.012 + 0.533
= 67.78kg.

The effects of dam age and culling are very important for the measurement of
genetic gain. However, ∆C was a phenotypic trend, and actually its value should
be regressed by heritability and added rather than subtracted, to the within sire
regression (Powell and Freeman, 1974). For example,

bPT/S = (t + g(1 − bDAT/S)/2) + ∆D

where ∆D is one half the genetic merit of the dams of the sire’s progeny deviated
from the population mean. The following was proposed by Harville and Henderson
(1967),

∆D = 0.5 h2 b(DP−P )T/HS

whereHS refers to within sire-herd subclasses. In their study, Harville and Hende-
rson (1967) used three methods to measure genetic change:

1. Method 1: is the original variant of Smith (1962) using the estimation of
within farm regression and within farm by sire regression;

2. Method 2: uses within-sire by dam subclass regressions and

3. Method 3: uses the principles of the contemporary comparison method.

One of the three estimators of the genetic trend can be calculated with the fol-
lowing equation:

ĝ =
2(bPT/H − bPT/HS + ∆D)

1 + bDAT/HS

where the regressions are calculated within herds. In this situation ĝ estimates the
within herd trend rather than the gross trend (Powell and Freeman, 1974). During
the period 1956 to 1962, the total (phenotypic) trend in the cattle population of
New York, USA was 176 kg milk and 6.4 kg fat. The genetic trend was -12 kg
(Method 1); 68 kg (Method 2) and 58 kg (Method 3), for milk yield, and was -0.1
kg; 3 kg; and 1.6 kg for milk fat for Methods 1, 2, and 3, respectively.

14.4 Using Relatives Other Than Progeny

In previous approaches, the genetic and environmental trends were quanti-
fied from progeny performance. There also have been approaches which replaced
progeny by collateral relatives (sisters and half-sisters). Thus, Burnside and Leg-
ates (1967) studied the use of first lactation performance of the full sisters and
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paternal half-sisters to measure the genetic and environmental trends in a pop-
ulation of dairy cattle. The milk yield and the milk fat were analysed for 1953
to 1961. Least squares constants for year of calving were obtained. They used
an estimator similar to (14.6), with some corrections for use of full sisters. Thus,
when these relatives were used, their performances might be higher than expected
when they are the result of directed mating. This would introduce a bias, and the
estimator, bPT/SD, might be negative, even with no environmental trend in the
population. To remove the bias, the authors proposed to subtract 78 kg milk from
the production of each first full sister (78 kg was the amount of the difference of
99 kg that was supposedly due to environmental causes). The authors used two
variants of model (14.6) to estimate genetic trend of the population:

∆G1 = b(∆G+∆E) − b(∆E)

= 2(b(∆G+∆E) − b(∆G/2+∆E))

where b(∆G+∆E); b(∆E) and b(∆G/2+∆E) are the weighted regressions on year of
calving. For this population, the total annual genetic gain was 63 kg milk and
0.007% for milk fat. The performances of full sisters were analysed to obtain
solutions for the effect of years, corrected for parental genetic effects and for
selection. The weighted regressions of the coefficients showed an annual genetic
trend of 45 kg milk and 0.018% for milk fat.

The second estimate of genetic gain was obtained by comparing the total
trend with half of the genetic trend plus the environmental trend, by analysing
the performance of the half-sisters corrected for the genetic effects of sires. The
results showed an annual gain of 55 and 45 kg milk and 0.016% for the milk fat.
For the milk yield, the two estimates (45 and 55 kg) represent 0.75% and 0.92%,
respectively, from the population average (6005 kg ME). The results were similar
to the rate of the annual genetic gain estimated by Rendel and Robertson (1950),
when progeny testing was not used.

Acharya and Lush (1969) measured the genetic gain in a cattle population
from India, for three traits: age at first calving; milk yield at first calving and
first calving interval, using two methods.

1. Two times the difference between the total regression and the within sire
regression on time, 2(bPT − bST );

2. Two times the within sire regression of progeny performance on time, each
performance being expressed as deviation from the average of the contem-
poraries, −2b(S−P )T .

The results using the first method were -2.90 months; 30.7 kg milk and
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-0.66 months, for each of the three traits. For the second method, the results
were -1.48 months; 10.3 kg milk and -0.29 months. As can be seen, the estimates
obtained with the first method were larger than estimates from the second method.
The authors considered the results produced by the second method to be more
credible, because this method eliminates annual environmental fluctuations.

Miller et al. (1969) estimated the genetic merit of a sire by direct and
indirect comparisons between all sires. By taking into consideration the sire of
each contemporary, the results were free from bias due to genetic trend.

The genetic trend estimated by the regression between the genetic merit of
the sire and time for the investigated population, showed an annual genetic gain
of 48 kg milk for the daughters of the proven bulls and of 18 kg for the sampled
sires.

Hargrove and Legates (1971) used the method suggested by Smith (1962),
to measure the annual genetic gain, which avoids the annual fluctuations in yield
due to the environmental factors. Thus, the genetic trend was estimated as two
times the regression within sire calculated from the difference between the popu-
lation average and the average of the sire families.

The within sire regression was calculated using the contemporary com-
parison because it gives a clear estimate of the genetic trend compared to the
Herdmate Comparison. Thus, according to the following equation (notations of
the authors), the estimate of the trend is half the genetic gain due to the sire:

b(P−S)T = (D − C)2 − (D − C)1

= (D2 −D1)− (C2 − C1)

= .5∆GdD + .5∆GsD − .5∆GdC − .5∆GsC

= −.5∆GsC

where 1 and 2 are the years when the daughters (D) and the contempor-
aries (C) are compared, and d for dams and s for sires, and ∆G is annual genetic
trend. Because the genetic value of the bulls is a constant, then ∆GsD = 0 and
the dams of the daughters are assumed to have he same genetic value as the dams
of contemporaries, hence (∆GdD −∆GdC) = 0.

If the herdmate comparison was used instead of contemporary comparis-
ons, the within sire regression would be more complex, but ∆GsD = 0. Let H
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represent Herdmate Method, then

bP−ST = (D −H)2 − (D −H)1

= (D2 −D1)− (H2 −H1)

= .5∆GdD + .5∆GsD − .5∆GdH − .5∆GsH

= .5∆GdD − .5∆GdH − .5∆GsH

with other terms as defined above. The authors estimated a genetic trend
of 53 kg milk and 1.8 kg fat for the Holstein population and 25 kg milk and 0.9
kg fat for the Jersey breed. The total phenotypic trends were 133 kg milk for
Holstein and 68 kg for Jersey.

14.5 Regression within sire, within farm

Hickman (1971) proposed the regression within sires, within farms, on
time, of the difference between daughter average performance and contemporary
cows’ average performance.

Let n1 equal the number of daughters, n2 equals the number of contempor-
aries, dijk is the difference between daughter and contemporary averages within
farm j for sire k and year-season i, where tijk is the time variable (i.e. number of
months in a season).

Also, wijk = (n1n2)/(n1 + n2).

The regression was calculated as

bdt =

∑
j

∑
k

[∑
i(wijkdijktijk)− (

∑
i(wijkdijk))(

∑
i(tijk))∑

i(wijk)

]
∑

j

∑
k

[∑
i(wijkt2ijk)−

(
∑

i(wijktijk))
2∑

i(wijk)

]
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14.5.1 Example Data

The time variable is tijk = 6 months for all calculations in this example.
Data are shown in Table 14.5, and calculated values are given in Table 14.6.

Table 14.5: Example Data for Within Sire and Herd Regression

Herd Sire Year Season Dau. Cont. Diff. No. No.
Ave. Ave. Daus. Cont.

1 1 1 1 5000 4000 1000 3 4
2 5500 4800 700 5 3

1 1 2 1 5700 5900 -200 2 8
2 4200 4500 -300 4 2

1 2 1 1 5250 4100 1150 3 5
2 4800 5300 -500 5 4

1 2 2 1 4150 5200 -1050 4 5
2 5200 5800 -600 7 3

1 3 1 1 5700 4200 1500 5 7
2 4350 4800 -450 8 3

1 3 2 1 7100 6200 900 4 5
2 5800 7200 -1400 9 3

2 1 1 1 4300 3800 500 8 3
2 5700 4900 800 4 5

2 1 2 1 5235 4800 435 7 4
2 4800 5100 -300 3 8

2 3 1 1 4800 5000 -200 5 3
2 5400 4700 700 4 8

2 3 2 1 5900 5200 700 7 4
2 4800 5100 -300 3 5
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Table 14.6: Intermediate Quantities for Within Sire and Herd Regression

Herd Sire Year Season w wd wdt wt2 (wt)2

1 1 1 1 1.71 1714.29 10,285.71 61.71 105.80
2 1.88 1312.50 7,875.00 67.50 126.56

Total 3.59 3026.79 18,160.71 129.21 232.36
1 1 2 1 1.60 -320.00 -1,920.00 57.60 92.16

2 1.33 -400.0 -2,400.00 48.00 64.00
Total 2.93 -720.00 -4,320.00 105.60 156.16

1 2 1 1 1.88 2156.25 12,937.50 67.50 126.56
2 2.22 -1111.11 -6,666.67 80.00 177.78

Total 4.10 1045.14 6,270.83 147.50 304.34
1 2 2 1 2.22 -2333.33 -14,000.00 80.00 177.78

2 2.10 -1260.00 -7,560.00 75.60 158.76
Total 4.32 -3593.33 -21,560.00 155.60 336.54

1 3 1 1 2.92 4375.00 26,250.00 105.00 306.25
2 2.18 -981.82 -5,890.91 78.55 171.37

Total 5.10 3393.18 20,359.09 183.55 477.62
1 3 2 1 2.22 2000.00 12,000.00 80.00 177.78

2 2.25 -3150.00 -18,900.00 81.00 182.25
Total 4.47 -1150.00 -6,900.00 161.00 360.03

2 1 1 1 2.18 1090.91 6,545.45 78.55 171.37
2 2.22 1777.78 10,666.67 80.00 177.78

Total 4.40 2868.69 17,212.12 158.55 349.15
2 1 2 1 2.55 1107.27 6,643.64 91.64 233.26

2 2.18 -654.55 -3,927.27 78.55 171.37
Total 4.73 452.74 2,716.36 170.18 404.63

2 3 1 1 1.88 -375.00 -2,250.00 67.50 126.56
2 2.67 1866.67 11,200.00 96.00 256.00

Total 4.54 1491.67 8.950.00 163.50 382.56
2 3 2 1 2.55 1781.82 10,690.91 91.64 233.26

2 1.88 -562.50 -3,375.00 67.50 126.56
Total 4.42 1219.32 7,315.91 159.14 359.82

For the first herd-sire-year subclass, then
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NUM =
∑
i

(wijkdijktijk)−
(
∑

i(wijkdijk)) (
∑

i(tijk))∑
i(wijk)

=

(
18, 160.71− (3026.79)(12)

3.59

)
= 8041.31,

and

DEN =
∑
i

(wijkt
2
ijk)−

(
∑

i(wijktijk))
2∑

i(wijk)

=

(
129.21− 232.36

3.59

)
= 64.48.

The other herd-sire-year subclasses are in Table 14.7.

Table 14.7: Herd-sire-year subclass Totals

Herd Sire Year NUM DEN
1 1 1 8,041.31 64.48
1 1 2 -1,374.55 52.36
1 2 1 3,209.82 73.22
1 2 2 -11,583.65 77.74
1 3 1 12,372.76 89.87
1 3 2 -3,814.29 80.50
2 1 1 9,395.61 79.27
2 1 2 1,567.13 84.59
2 3 1 5,008.72 79.27
2 3 2 4,005.88 77.74

Totals 26,828.74 759.04

The regression is

bdt =
26828.74

759.04
= +35.35kg,
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and the genetic trend is 2 times bdt or +70.69 kg.

14.6 Powell and Freeman Review

Powell and Freeman (1974) reviewed five estimators of genetic trend, as
follows:

Method 1

ĝ1 =
2(bPT/H − bPT/HS + ∆D1)

1 + bDAT/HS − bDAT/H
where ∆D1 = 0.5h2(bDPT/HS − bDPT/H).

Method 2
ĝ2 = bPT/H − bPT/HSD

Method 3

ĝ3 =
−2(b(P−P )T/HS −∆D2)

1 + bDAT/HS − bDAT/H
where ∆D2 = 0.5h2b(DP−P )T/HS as described by Harville and Henderson
(1967).

Method 4
4Si =

∑
j

(nijŜj)/
∑
j

nij

where Ŝj is an estimate of one half the transmitting ability of sire j and nij
is the number of daughters of the sire calving in year-season i. The trans-
mitting abilities are obtained from a linear model analysis that accounts
for genetic trends as presented in either Powell and Freeman (1974) or in
Schaeffer (1973).

Powell et al. (1974) applied this method to the Holstein population from
1960 to 1975 in the USA. For milk yield the trend was 18 kg per year. From
1968 to 1975 the trend was 38 kg per year using average estimated breeding
values of sires. When using the average EBV of cows, the values were 8 and
21 kg of milk, respectively.
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Method 5
E(b(P−P )T/HSD) = t− (t+ g) = −g.

Trend is estimated by the regression within full sister families as deviations
from the adjusted herdmate average.

Method 3 gave estimates of 82 kg milk and 1.5 kg fat. Methods which
excluded progeny performance overestimated genetic change, while Method 5 gave
estimates with very high standard errors.

Schaeffer et al.(1974) estimated the genetic change in Ontario Holsteins
as twice the average sire transmitting abilities by year from 1958 to 1972. Sire
effects were obtained from a sire model without genetic relationships among bulls,
similar to the Northeast AI Sire Comparison Method used at Cornell University
(See Chapter 9 for details). The estimates were 41.8 kg milk and 1.26 kg fat
yields.

By moving from a sire model to a cow model, Slanger et al. (1976) and
Hintz et al. (1978) used estimated breeding values of cows averaged by year of
first calving. Another estimator was to obtain a weighted average of the sires’
estimated transmitting abilities within years of calving. Both sets of averages
could be regressed on years to obtain a single number. For Holsteins, the cow
trend for AI sired cows was 17.9 kg while that for non-AI sired cows was 26.1
kg. The trend using sire estimated transmitting abilities was 17.9. These results
were lower than the theoretically possible trend, if selection were entirely on milk
production, predicted by Rendel and Robertson (1950) or Van Vleck (1976). This
is due to the emphasis placed on many other traits by dairy producers, such as
conformation, fertility, disease, calving ease, and milking speed. The estimated
trends also depend on the assumed value of heritability. If the applied value is
larger than the actual heritability, then trends can be overestimated, and likewise
if the applied value was lower than the actual heritability, then trends would be
underestimated.

Lee et al. (1985) estimated trends in the US Holstein population from
1960 to 1979 using transmitting abilities of sires, dams, maternal grandsires and
maternal granddams. One method used

ĝ = β̂S + β̂D,

where β̂S is the regression of average sire PD(Predicted Differences, which are
estimated transmitting abilities) on birth year of the progeny, and β̂D is the
regression of average dam CI (Cow Index) on birth year of the progeny, each
regression estimated separately. The second method used

ĝ = 2 β̂ETA,
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where β̂ETA is the regression of average cow CI on birth year of the cow, or the
regression of average bull PD on birth year of the bull. Both methods used on dam
populations, produced similar results of 54.77 kg for the first method and 51.55
kg milk for the second method, but results were different for the sire population.

Van Vleck et al. (1986) estimated genetic change for Holsteins in the
northeast USA using an animal model that considered all genetic relationships
among individuals in the population. Until this study, genetic groups had only
been applied to sires, but now genetic groups had to be considered for cows also.
Phantom parent genetic groups were not yet known. Their estimates of trend
from 1970 to 1980 were 39.5 for registered cows, and 38.1 kg for non-registered
cows.

Boichard et al. (1995) proposed three methods for estimating genetic
trends.

1. Evaluations from repeatability animal model compared to evaluations from
a first lactation only animal model. The trends should be similar.

2. Daughter yield deviations (DYD) within sire by calving year compared over
years to see that there is little change (regression of zero on years).

3. Variance of successive official evaluation runs could detect systematic trends
due to information from new daughters.

The first two methods produce very reliable estimates of genetic trends, but the
model must be correct and the data should be accurate. The third method,
although having a lower precision of results, was easier to apply. These three
methods are employed by Interbull to validate national estimates of genetic trend
before a country’s EBV are used in international comparisons.

Bonaiti (1993) found that a bias of 100 kg in age correction factors could
result in a 40 kg bias in annual genetic trends. Banos (1992) combined data from
the USA and Canada, and genetic evaluations for the combined data were run
in Canada and the USA. The resulting genetic trends were different, presumably
due to the genetic evaluation methods. Bonaiti (1993) also found inconsistent
genetic trends between USA and France, and Boichard et al. (1995) showed large
differences between estimated and realized genetic change between the USA, the
Netherlands, Germany, Italy, and France.

A summary of estimates (from the literature) of genetic trends in milk
production for Holsteins only, are presented in Table 14.8 (References are at the
end of the chapter).
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Table 14.8: Estimates of Genetic Trend For Milk Yield (kg) in Holsteins

AI or Period Location Estimate First author Year
non-AI
AI New York 33 Elston,R.C 1959
AI 1951-1959 New York 29 Van Vleck,L.D 1961

non-AI 1951-1959 New York 23 Van Vleck,L.D 1961
both One herd 3 Gaalaas, R.F 1961
both Texas 81 Qureshi,A.W 1963
AI 1956-1962 New York 47 Harville,D.A 1967
AI One herd 51 Branton, C 1967
AI 1953-1961 North Carolina 45 Burnside,E.B 1967
AI 1955-1965 One herd 0 Burnside,E.B 1968
AI New York 48 Miller,P.D 1969
both SE USA 53 Hargrove,G.L 1971
both 1958-1967 Florida 33 Verde,O.G 1972
both 1957-1969 Midwest USA 66 Powell,R.L 1974
AI 1958-1972 Ontario 42 Schaeffer,L.R 1975
AI 1966-1972 Quebec 46 Kennedy,B.W 1975
both Wisconsin 43 Olson,K.L 1976
AI 1957-1975 NE USA 46 Everett,R.W 1976
AI 1957-1976 NE USA 39 Ufford,G.R 1977
AI 1961-1974 NE USA 17.9 Hintz,R.L 1978
both 1958-1975 Canada 38.2 Batra,T.R 1979
both 1959-1975 Florida 43 Moya,J 1985
both 1960-1979 USA 54 Lee,K.L 1985
both 1960-1980 NE USA 39 Van Vleck,L.D 1986
both 1956-1971 North Carolina 120 Legates,J.E 1988
both 1955-1981 NE USA 35 Van Tassell,C.P 1991

14.7 Animal Models

The easiest measures of genetic change can be obtained from EBV calcu-
lated in an animal model through MME. However, the precise definition needs to
be stated, which means that the cows included in the estimates need to be clearly
stated. For example, you could calculate the average EBV of cows by their year
of birth, which means each cow’s EBV is used only once. Alternatively, you could
have the average EBV of cows by year of calving which implies a cow’s EBV is
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used each year in which it calves, and thus, gives an estimate of the genetic merit
of the milking population of cows in a given year. Another estimate could be
derived by a weighted average of the sire EBV of each cow by the cow’s year of
birth. The agreement among these estimates would be interesting to study. The
trend in AI sires, by year of sire birth, and the trend in dams of cows, by their
year of birth, would also provide relevant information to indicate which pathways
of selection are providing most of the genetic change.

With a Test Day model (TDM) cows receive EBV for first, second, and
third and later parities, which are genetically correlated traits, although highly
correlated. Trends should be similar for each trait.

In the USA, data in their animal model date back to 1957. Both the
phenotypic and genetic trends are given in Figure 14.1.

Figure 14.1
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Data were available from the USDA AIPL website. The average EBVs of
cows by year of birth increase smoothly and almost evenly over the entire period
from 1957 to 2010. The phenotypic trend is not as smooth due to environmental
changes and demands of the consumers for milk products. There is a slight leveling
of phenotypic and genetic trends in the last few years. Some producers believe
cows are giving enough milk, so that it is time to concentrate on efficient producers
of milk. Cows that do not need a lot of feed, do not have reproduction problems,
or do not have health problems should be favoured. Indexes that combine several
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traits are being used more by producers than just milk yield evaluations.
Note that the genetic trend has been 3629 kg over 53 years or 68 kg per

year, compared to a phenotypic trend of 6350 kg or 120 kg per year. Genetic
change has been more than half of the phenotypic change. Nutrition, techno-
logy, and improved management practices account for the remainder. Genetic
evaluation methods have been critical to genetic change.
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Chapter 15

Threshold Models

LARRY SCHAEFFER
JANUSZ JAMROZIK

15.1 Categorical Data

There are many traits recorded for dairy cattle which are subjective assess-
ments of the animal. A person decides to which category out of m categories an
animal should be assigned. Examples are calving ease, severity of claw disorders,
and stature. Some traits categorize themselves, such as diseased or not diseased.
When m = 2, then the trait is an "all-or-none" or binary trait. Most disease
traits are binary in nature.

Categories are arranged in a sequence from one extreme expression to the
opposite extreme expression. Calving ease, for example, can range from com-
pletely unassisted calving, to very difficult calving, even to caesarian section.
There could be 3, 4, or 5 categories of calving difficulties.

Categorical traits may be inherited in a polygenic manner. The underlying
susceptibility to a disease trait, or to calving ease may actually be continuous and
may follow a normal distribution. The underlying continuous scale is known
as the liability scale. On the liability scale are one or more threshold points
(t1 < t2 <,...,< tm−1) as shown in Figure 15.1.

If the liability value, λ, of an animal is between ti and ti+1, then the animal
belongs to category i+ 1, and if the liability is below t1, then the animal belongs
to category 1 and if the liability is above tm−1 then the animal belongs to category
m. The liability scale is only conceptual and cannot be observed.

Threshold models were proposed by Gianola (1982), Gianola and Foulley
(1983) and Harville and Mee (1984) as the most theoretically acceptable method

241
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Figure 15.1
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of analysis for categorical data. However, Meijering and Gianola (1985) showed
that for some situations a linear model may perform just as well in terms of
correctly ranking dairy sires. The threshold models assume a continuous nor-
mally distributed underlying liability scale for the trait. The thresholds define
the categories that are observed. The solution to a threshold model is non-linear
in computational complexity, and there must be back and forth calculations of
thresholds and effects in the model until convergence of the system of equations
stabilizes.

There are various quantities which need to be computed repeatedly in a
threshold model analysis, and these are based on normal distribution functions.

1. Φ(λ) is known as the cumulative distribution function of the normal distri-
bution with mean 0 and variance 1. This function gives the area under the
normal curve up to the value of λ, for λ going from minus infinity to plus
infinity (the range for the normal distribution). For example, if λ = .4568,
then Φ(λ) = .6761, or if λ = −.4568, then Φ(λ) = .3239. Let Φk represent
the value up to and including category k for k = 1 tom. Therefore, Φm = 1.

2. φ(λ) is a function that gives the height of the normal curve at the value λ,
for a normal distribution with mean zero and variance 1. That is,

φ(λ) = (2π)−.5 exp−.5λ2.

For example, if λ = 1.0929, then φ(λ) = .21955.
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3. P (k) is the probability that λ from a N(0, 1) distribution is between two
threshold points, or is in category k. That is,

P (k) = Φk − Φk−1.

If k = 1, then Φk−1 = 0.

15.2 Example Data

Consider calving scores of calves from first lactation heifers in two herds
within the same year-season (Table 15.1). There are m = 3 categories, i.e., 1
is unassisted calving, 2 is assistance required, and 3 is a very difficult calving.
Calving ease could be considered a trait of the calf being born, or it could be
considered a trait of the cow that is giving birth. In this example, the trait is
observed on the calf. Maternal effects are ignored in this example because each
dam has only one calf.

Table 15.1: Calving scores of calves from first lactation heifers

Year Calf Sire Dam Sex of Calving
Season Herd ID ID ID Calf Score

1 1 15 1 4 F 1
1 1 16 1 5 F 2
1 1 17 2 6 M 1
1 1 18 3 7 M 2
1 1 19 3 8 M 3
1 2 20 1 9 M 1
1 2 21 2 10 F 2
1 2 22 2 11 F 1
1 2 23 2 12 F 3
1 2 24 3 13 F 1
1 2 25 3 14 M 3

15.3 Linear Model

The most common analysis of categorical data is the use of a linear model
on the observed scores, ignoring the fact that categorical data are non-normally
distributed. This is the easiest approach because no distribution is assumed.
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However, hypothesis tests about fixed effects in the model could be biased because
of non-normality of the data. Analysis of category number assumes the ‘distances’
between categories is the same. For example, to go from unassisted to assisted
calvings assumes the same degree of difficulty as to go from assisted to very
difficult. Usually the percentages of observations in each category indicate that it
is easier to be in the unassisted category and there are typically fewer observations
in the assisted and very difficult categories.

Let the model be

yijk = Si +Hj + ak + eijk

where

yijk is an observed score (a number from 1 to m) on calf k, of sex i, in herd j,

Si is a sex of calf effect,

Hi is a herd-year-season effect (in this example there is only one year-season, but
two herds),

ak is a calf additive genetic effect, and

eijk is a residual error effect.

Calves are assumed related through sires and dams, and let σ2
e = 2 σ2

h, and
σ2
e = 6 σ2

a. The usual MME are formed and solved. The solutions for animal
additive genetic effects are used to rank animals (negative values are better than
positive values because the categories were numbered from easiest to most difficult
calvings).

The solution for female calves was 1.66 while for male calves was 1.99,
which indicates that male calves had more difficult births than female calves.
The difference between herd-year-season 1 and 2 was 0.08 in favour of herd-year-
season 1. Thus, there were more difficult births in herd-year-season 2. Below is a
table of the additive genetic solutions (Table 15.2), for the three sires and animals
15 and 25.

The sires were ranked in order to their ID with sire 1 having the easiest
calvings. These solutions can only be used to rank the animals, but to predict the
calving ease of a future progeny is not simple. There would need to be separate
predictions for a future male or female calf. For a future female progeny of sire
1, the prediction would be 1.66− 0.08 = 1.58, or somewhere between category 1
and category 2.
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Table 15.2: Additive genetic values from linear model analysis of category numbers

Animal Solution
1 -0.08
2 -0.00
3 0.09

15 -0.11
25 0.15

15.4 Use of Scores

Snell (1964) proposed changing category numbers to scores ranging from
0 to 100, where the scores were obtained assuming an underlying exponential
distribution. The purpose of the scores was to provide homogeneous residual
variances over observations and approximately normal distribution of residuals.
In the example data, there were 5 observations in category 1 (45.45%), and 3
each in categories 2 (27.27%) and 3(27.27%). The scoring process is known as
“normalizing” .

A simple normalizing method (not Snell’s) is to determine the averages of
the means of liabilities within each category.

Figure 15.2
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The mean of values on the x-axis for Unassisted calvings (blue area) was
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0.8725, the mean for Assisted calvings (green area) was −0.2379, and the mean
for Very Difficult calvings (red area) was −1.215. The distance between means
of the categories is not equal, but depends on the percentage of observations in
each category and the location of truncation points. The means are used in the
linear model analysis rather than the category numbers. The linear model was
exactly the same as in the previous section. In this analysis, positive solutions
are favourable and negative solutions are not good.

Female calves had a mean liability of 0.16, while male calves had a mean
liability of -0.17. The difference in liabilities between herd-year-season 1 and 2
was 0.07, in favour of herd-year-season 1.

Animal genetic values from linear model analysis of normalized scores

Animal Solution
1 0.09
2 0.00
3 -0.09
15 0.11
25 -0.15

The genetic solutions are nearly identical to the linear model analysis of
category numbers, but in this case the solutions are interpretted as differences in
the underlying normal scale. Thus, the results could be converted to probabilities.
Suppose we wanted to predict the probability of female progeny of sires 1 and 3
to be unassisted. For sire 1, locate 0.16 + 0.09 on the x-axis of the normal density
function and find the probability up to that point, Φ(0.25) = 0.60 or 60%, and
for sire 3, locate 0.16− 0.09 giving Φ(0.07) = 0.53 or 53%. Thus, sire 1 would be
expected to have 7% more unassisted births than sire 3.

15.5 Separate Traits

Quaas and Van Vleck (1980) used a model where each category was a
different trait, and then a multiple trait model was applied to the data. Thus,
trait i was a binary trait with 1 if the animal belonged to that category, or 0
if it did not. If traits 1 and 2 were 0, then trait 3 had to be a 1. The multiple
trait equations would estimate the probability of having progeny in each category.
With m categories there would be m− 1 traits, with the mth trait determined by
subtraction from the other traits.

In the above example, the frequencies of observations in the three categor-
ies were 0.4545, 0.2727, and 0.2727. Let yi represent the vector of observations
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for animal i of length m, where yi would have one 1 and (m − 1) zeros. The
phenotypic covariance matrix of y over all animals would be

V ar(y) =


π1(1− π1) −π1π2 · · · −π1πm
−π1π2 π2(1− π2) · · · −π2πm

...
...

. . .
...

−πmπ1 −π2πm · · · πm(1− πm)

 ,

where πi is the frequency of observations in category i. Numerically, for the
example data

V = V ar(y) =

 0.2480 −0.1240 −0.1240
−0.1240 0.1984 −0.0744
−0.1240 −0.0744 0.1984

 .

Note that the rows add to zero, and thus, the matrix is not positive definite.
Assuming heritability of each category is the same and equal to 0.10, and herd-
year-season effects are 0.3 of the total variance, then

G =

 0.02480 −0.01240 −0.01240
−0.01240 0.01984 −0.00744
−0.01240 −0.00744 0.01984

 ,

H =

 0.0744 −0.0372 −0.0372
−0.0372 0.05952 −0.02232
−0.0372 −0.02232 0.05952

 ,

and R = V −G−H,

R =

 0.1488 −0.0744 −0.0744
−0.0744 0.11904 −0.04464
−0.0744 −0.04464 0.11904

 .

Because the covariance matrices are singular, analyze only the first two
categories and omit category m from the multiple trait analysis. The model is
the same as in the previous two sections. The solutions are given in Table 15.3.

To predict the probability of sire 1 having a female calf in category 1, add
0.49 to 0.04 to get 0.53, or 53%, and for sire 3 it would be 0.44 or 44%, a difference
of 9%. For a female progeny in category 3, the corresponding probabilities would
be 0.10 for sire 1 and 0.18 for sire 3.

There could be predictions for each category, but in practice you would
need to predict one quantity for an average of female and male calves because the
sex of the calf would be equal probability male or female.
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Table 15.3: Solutions from multiple trait analysis of categories as binary traits

Cat. 1 Cat. 2 Cat. 3
Female 0.49 0.37 0.14
Male 0.42 0.18 0.40

HYS 1 -0.03 0.10 -0.07
HYS 2 0.03 -0.10 0.07
Sire 1 0.04 -0.00 -0.04
Sire 2 0.00 -0.01 0.01
Sire 3 -0.05 0.01 0.04

Calf 15 0.08 -0.05 -0.03
Calf 25 -0.07 -0.01 0.08

15.6 Threshold Model

In a threshold model, the underlying liabilities are modelled, and these
give rise to the phenotypes which are either 1, 2, or 3.

λijkl = f(t)i + Sj +Hk + al + eijkl

where

λijkl is the unknown, underlying liability value for calf l, of sex j, in herd k,

f(t)i is a function of the thresholds and probabilities of the calving score of the
calf belonging to category i,

Sj is a sex of calf effect,

Hk is a herd within year-season effect,

al is a calf additive genetic effect, and

eijkl is a residual error effect.

Because the liability values are unknown, a scale has to be imposed on the
liabilities. A convention is to set the residual variance to be 1. The heritability
of calving scores will be 0.10 in this example, but is often lower, and sometimes
greater than 0.10. The herd-year-season variation will be assumed 0.30 of the
total. The relationship matrix will be utilized.

Let the model be written in matrix notation as

λ = Ft + Xb + Zu + e,
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where

λ is the vector of unobserved liabilities of each animal,

t is the vector of m− 1 thresholds,

b is the vector of fixed effects in the model,

u is the vector of random effects, including random animal additive genetic effects,

e is the vector of random residuals, assumed to have mean 0 and variance of 1,

F is a matrix of probabilities of an animal being in the various categories resulting
in a function of the unknown thresholds, and

X,Z are the usual design matrices of a linear model.

A non-linear system of equations were derived separately by Harville and
Mee (1984) and by Gianola and Foulley (1984) for a sire model application, but
which can be extended to an animal model, where the animal is the smallest
subclass with only one observation in it. The equations can be written as follows: Q L′X L′Z

X′L X′WX X′WZ
Z′L Z′WX Z′WZ + G−1

 ∆t
∆b
∆u

 =

 p
X′v
Z′v −G−1u

 .

The equations must be solved iteratively. Note that ∆b, for example, is the
change in solutions for b between iterations. The calculations for Q, L, W, p,
and v need to be described. The values of these matrices and vectors change with
each iteration of the non-linear system. The amount of change each iteration
decreases to zero.

15.6.1 Calculations

The process is begun by choosing starting values for b, u, and t. Let
b = 0 and u = 0, then starting values for t can be obtained from the data
by knowing the fraction of animals in each category. For the example, let the
threshold values be t1 = 0.3904, and t2 = 0.9563 for categories arranged from left
to right. Category 1 is Unassisted calvings, 2 is Assisted calvings and 3 is very
difficult calvings. The categories could be ordered in the opposite direction too,
if desired.

The following calculations are performed for each calving score for animals
15 to 25, those for l = 15 :
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1. fli = ti − x′lb− z′lu for i = 1 to (m− 1).

f15,1 = t1 − SF −H1 − a1

= .3904 − 0 − 0 − 0

= .3904, and
f15,2 = t2 − SF −H1 − a1

= 0.9563.

2. For i = 0 to m, Φli = Φ(fli).

Φ15,0 = 0

Φ15,1 = Φ(.3904)

= .6519,

Φ15,2 = Φ(0.9563) = .8305, and
Φ15,3 = 1.

3. For i = 1 to m, Pli = Φli − Φl(i−1).

P15,1 = .6519 − 0 = .6519,

P15,2 = .8305 − .6519 = .1787,

P15,3 = 1 − .8305 = .1695.

4. For i = 0 to m, φli = φ(fli).

φ15,0 = 0.0

φ15,1 = φ(.3904) = .36967,

φ15,2 = φ(.9563) = .25254,

φ15,3 = 0.0.

5. The matrix W is a diagonal matrix of order equal to the number of obser-
vations, N . The elements of W provide weighting factors for each animal
with a record. The jth diagonal is given by

wjj =

m∑
k=1

(φj(k−1) − φjk)2/Pjk.
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For the first observation,

w15,15 =

(
(φ15,0 − φ15,1)2

P15,1
+

(φ15,1 − φ15,2)2

P15,2
+

(φ15,2 − φ15,3)2

P15,3

)
= 1

(
(−.36967)2

.6519
+

(.36967− .25254)2

.1787
+

(.25254)2

.1695

)
= .66277.

For all observations, W has diagonals equal to 0.66277, in this first iteration
with all solutions to sex effects, herd-year-seasons, and animals equal to zero.

6. The vector v is used as the phenotypes, which are unknown. For the jth

observation,

vj =

m∑
k=1

njk(φj(k−1) − φjk)/Pjk.

Then for animal 15,

v15 = 1(φ15,0 − φ15,1)/P15,1

+0(φ15,1 − φ15,2)/P15,2

+0(φ15,2 − φ15,3)/P15,3,

= −.5671.

The complete vector v is

( −.5671 .6556 − .5671 .6556 1.4902 − .5671

.6556 − .5671 1.4902 − 0.5671 1.4902 )′

7. The matrix L is of order N × (m− 1) and the jkth element is

`jk = −φjk[(φjk − φj(k−1))/Pjk − (φj(k+1) − φjk)/Pj(k+1)].
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For the example data,

L =



−0.4520 −0.2108
−0.4520 −0.2108
−0.4520 −0.2108
−0.4520 −0.2108
−0.4520 −0.2108
−0.4520 −0.2108
−0.4520 −0.2108
−0.4520 −0.2108
−0.4520 −0.2108
−0.4520 −0.2108
−0.4520 −0.2108



.

8. The matrix Q is a tri-diagonal matrix of order (m− 1)× (m− 1), however,
this is only noticeable when m is greater than 3. The diagonals of Q are
given by

qkk =
N∑
j=1

φ2
jk(Pjk + Pj(k+1))/PjkPj(k+1),

and the off-diagonals are

qk(k+1) = −
N∑
j=1

φjkφj(k+1)/Pj(k+1).

For the example data,

Q =

(
10.7198 −6.0599
−6.0599 8.0664

)
.

9. The elements of vector p are given by

pk =

N∑
j=1

φjk[
njk
Pjk
−
nj,k+1

Pj,k+1
],

for k equal to the category in which the animal was assigned. Hence,

p′ =
(
−3.3720 −0.2302

)
.

Put these elements into the MME given earlier along with X, Z, and G−1,
then
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∆t =

(
−0.061146

0.061146

)
which are added to the current values of t giving

t =

(
0.329254
1.017446

)

∆b =

(
0.252511585
0.719326847

)
, b =

(
0.252511585
0.719326847

)
The new solutions for HYS effects were

h =

(
−0.03156714

0.03156714

)
.

There were also new solutions for the animal additive genetic effects, but there
are 25 animals, too many to show these early results.

Once the new solutions are available, then the entire process is repeated
using the current solutions. The new results for the next iteration are as follows:

p =

(
−0.5120

0.8925

)
,

v =



−0.6541
0.4217
−0.9543
−0.0782

0.9068
−0.9661

0.3261
−0.7132

1.2053
−0.7424

0.8680



,

diag(W) = (0.7062 0.7346 0.7715 0.7725

0.7674 0.7722 0.7503 0.7270 0.7617

0.7357 0.7624 ),

Q =

(
10.054433 −4.992588
−4.992588 9.122229

)
,
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and

L =



−0.4700668 −0.2361804
−0.4608371 −0.2738132
−0.4103202 −0.3611655
−0.3676418 −0.4048709
−0.3433935 −0.4239606
−0.4067816 −0.3654070
−0.4496203 −0.3006381
−0.4644020 −0.2626043
−0.4353492 −0.3263621
−0.4602620 −0.2754458
−0.3281838 −0.4342064



.

Construct the MME again, and solve for the changes in the solution vectors.
Repeat until the values of the changes are all equal to zero.

After five more iterations, the nearly converged solutions were

t =

(
0.2759
1.0708

)
,

b =

(
0.1965
0.6648

)
,

h =

(
−0.0504

0.0504

)
,

and the animal EBVs are in the Table 15.4. Keep in mind that category 1 was
Unassisted calvings, so that negative values are good in this analysis.

The EBV can be converted to probabilities. Suppose we want to predict
the probability Pr that a female progeny of sire 1 would be in category 1.

Pr = Φ(t1 − x′b̂− z′â)− Φ(t0 − x′b̂− z′â)

= Φ(0.2527)

= 0.60

For sire 3, the same probability would be

Pr = Φ(t1 − x′b̂− z′â)− Φ(t0 − x′b̂− z′â)

= Φ(−0.2190)

= 0.41
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Table 15.4: EBV from Threshold Animal Model (TAM) Example

Animal EBV Animal EBV
1 -0.0943 15 -0.1274
2 -0.0030 16 0.0137
3 0.0974 17 -0.1193
4 -0.0535 18 0.0498
5 0.0406 19 0.1721
6 -0.0785 20 -0.1693
7 0.0007 21 0.0438
8 0.0823 22 -0.0918
9 -0.0814 23 0.1567

10 0.0302 24 -0.0452
11 -0.0602 25 0.1641
12 0.1055
13 -0.0626
14 0.0770

Thus, sire 1 would have 19% more Unassisted calvings than sire 3.

15.7 ECP

There can be computational problems with categorical traits. The Ex-
treme Category Problem (EPC) is one case. This problem occurs when most of
the observations are in one category. In a herd-year-season, for example, all of
the animals may be scored in category 1. Deriving some of the probabilities in
the threshold model, when all observations are in one category have led to prob-
lems. There are Bayesian methods for using prior information to reduce the ECP
problems.

The ECP is more common in disease or binary traits where the frequency
of a disease is very low, so that many subclasses have all observations in one
category or the other.

15.8 Multiple Traits

Analyses of categorical traits with continuous traits is becoming more
common. Simianer and Schaeffer (1989) provide details of an analysis using a
threshold model for one binary trait, and a regular mixed model for one continu-
ous trait. This method was applied to disease and yield traits in Norwegian dairy
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cattle by Simianer et al. (1991). There have also been analyses of calving diffi-
culty with birth weights, fertility traits with production traits, and many others.

15.9 Comments

As mentioned earlier, most routine applications of genetic evaluation to
categorical traits have utilized linear models rather than threshold models. Com-
parisons of rankings of sires from the two models has shown very high correlations
between the two rankings (over 0.99). Given that the threshold model is slightly
more difficult to carry out, routine linear model packages are more readily at
hand.

The more categories there are, such as 9 or 18 for conformation traits,
the more normally distributed are the observations. Threshold models are more
suitable for traits with just 3 or 4 categories. Even binary traits are served well
by linear models (Meijering and Gianola, 1985).

However, the threshold model provides estimates of heritability on the un-
derlying liability scale, which is normally distributed. These heritability estimates
are generally larger than those from a linear model analysis. There are conver-
sion formulas to change heritability from the linear model to what it would likely
be from the threshold model, based on category frequencies. In most cases the
converted value is the same as the heritability estimate from the threshold model.

Now there are Bayesian methods for threshold models, which are sup-
posedly easier to implement than a threshold model. See Sorensen and Gianola
(2002, p. 605).

There are other kinds of discrete data, such as number born, or number
of embryos produced. These are count data which have a Poisson distribution.
Bayesian methods can be utilized for these data too. Today’s animal breeders have
to know and understand Bayesian methodology, which means better analyses for
non-normally distributed data.
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Chapter 16

Survival

LARRY SCHAEFFER

16.1 Definitions

If a dairy cow was allowed to live a natural life, it could live to be 10
to 12 years of age, on average. Cows have been known to reach 17 years of age
or more. However, in most dairy herds, cows only live through about 3 and a
half lactations, on average, which corresponds to 5.5 years of age. This implies
that owners are deciding when cows will leave the herd, which is a reflection of
the productivity and profitability of the cow relative to other cows in the herd,
and relative to possible younger replacements. Thus, there are many reasons why
cows leave the herd, and the owner is the primary deciding factor, except for
involuntary causes. Every cow reaches a point where it is no longer profitable to
keep her in the herd.

In a country where herds are governed by a quota system of production,
cows may remain longer in the herd, or may quickly disappear if the herd might
go over quota in production. Thus, there are outside financial considerations that
affect the owners’ decisions, and which are totally independent of the cows.

At the same time, dairy producers want cows that will stay in the herd for
three or more lactations because that could reduce the cost of raising or buying a
replacement animal. Cows should have “longevity” or “stayability”. The problem
is how to define longevity, how to analyze that definition of longevity, and how
much importance to give to this trait in an overall profit index.

Regardless of the definition of longevity, the heritability estimates of the
trait range from 0.02 to 0.10. In the past, selection for increased production also
increased herdlife, but today herdlife encompasses the functionality of the cow. A

259
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functional cow has good fertility and reproductive ability, has good conformation
(feet and legs, udder), and is virtually disease free. Thus, a functional cow is
less costly to maintain. See Vollema (1998) and Interbull Bulletin 21 (1999) for
different types of survival analyses that have been applied.

16.1.1 Censored Data

A basic description of survival data and terminology is given by Collett
(2003). Usually the date of the last test date is the cull date for an animal, and
this would be an uncensored record, if true. A cow’s record is said to be censored
when it has not yet died or been culled. All current, in-milk cows are censored
data. When analyzing survival there are three possible situations.

1. Censored data are removed from the analysis,

2. Censored data are included in the analysis, but are NOT properly taken
into account, or

3. Censored data are included in the analysis and are properly taken into
account.

Cows can change to herds that are not on milk recording, and thus, their
actual cull date is not recorded. Thus, reasons for disposal from herds are im-
portant to determine if records are censored. The analysis of survival or herdlife
should include censored data because dairy producers are most interested in the
young progeny tested bulls more than the older proven bulls.

16.1.2 Indirect Herdlife

Indirect herdlife is estimated through a multiple trait analysis of indicator
traits that are correlated with herdlife, and the results combined in an index. The
usual indicator traits are conformation traits including feet and legs, udder, rump,
and stature (Jairath et al. 1998). The indicator traits are usually available long
before cows are culled, and therefore, give an early indication of herdlife, although
not very accurately. The other definitions that follow would be measures of Direct
Herdlife.

16.1.3 Length of Productive Life

The age of the cow at the time it is culled is the observation, measured
in days, months, years, or number of completed lactations. These observations
are known for animals that have been culled, but do not include censored cows.
This trait is not normally distributed and would have most observations clustered
around 5.5 years, but there would be a long thin tail above 5.5 years.
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For censored cows, a predicted length of productive life is usually made
based on probabilities estimated from past data. Thus, if a cow has lived to
time t, then the probability that it will live to the next time t+ 1 is used as the
observation.

16.1.4 Stayability

Stayability refers to a fixed time period, such as survival to 60 months
of age, yes or no. Sires are ranked on the percentage of daughters that live to
60 months. Or it may be stayability to the completion of first lactation, second
lactation, or third. The analyses are single or multiple trait (binary traits) (Jairath
et al. 1998).

In Canada, the stayability evaluations have been expanded to a five trait
analysis. First lactation is split into survival up to 120 DIM and survival up to
240 DIM, then lactations 2, 3, and 4. The results are combined with Indirect
Herdlife evaluations using the MACE procedure described in Chapter 11.

16.1.5 Survival

A non-linear approach is taken where time to failure is modelled. Censored
data can be included. A survivor function is derived and from this a hazard
function is created, which is influenced by time dependent variables, and time
independent variables. This approach will be described in more detail in a later
section.

16.1.6 Functional Herdlife

Whatever measure of herdlife is analyzed, there is a need to remove the ef-
fects of production on culling. Production is a primary trait because it contributes
to the income of a dairy enterprise. What is left are the effects of functional or sec-
ondary traits which contribute to the costs of keeping a cow. Thus, Uncorrected
Herdlife includes culling on primary AND secondary traits. Functional Herdlife
has culling on production removed through the analysis. Functional Herdlife in-
cludes culling reasons for conformation, reproduction, and health, and natural
longevity.

16.2 Survival Functions

Most cows have been culled by the time they reach 100 months after first
calving. A survival function goes from 1 for an animal that is alive to 0 when the
animal is dead or culled. The vertical line from 1 to 0 indicates the moment in the
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test period when the animal’s function changes, i.e. when the animal is removed
from production. The survival function for one cow is a one-step function. Figure
16.1 has survival functions for 3 cows, one has died at 20 months after first calving,
one at 45 months, and one at 66 months. The fourth graph in Figure 16.1 is the
average step function for the three cows combined.

Figure 16.1
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As you accumulate more and more cows and average them together, you
obtain the survival function for the population, over the years covered by those
cows, as in Figure 16.2. This survival function is almost a smooth curve. The
values on the curve give the expected probability of an animal being alive in x
months after first calving. By the time a cow reaches 100 months, it has a pretty
high probability of being culled in the next month.

Because there is a curve over time, it is natural to think of an analysis that
involves a random regression model. This was the approach taken by Veerkamp
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et al. (1999) and Galbraith (2003).
The survival function in Figure 16.2, for this example, is

St =
n− dt
n

where t is the month in which an animal was last alive, n is the total number of
live animals that had the opportunity to live for 100 months, and dt is the number
that have died up to and including period t.

Figure 16.2
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Eventually dt comes closer to n. The population survival function can be
modelled by a Weibull function,

St = exp−(λt)ρ

where λ = 0.01941 and ρ = 1.746501 give the best fit for Figure 16.2.
For an individual cow, the survival function is a one step function that can

be represented by a vector, s. Suppose a cow was last alive at 20 months after
first calving, then the first 20 elements of s are 1, and the remaining 80 elements
are 0.

For a cow that has lived for 34 months and is still milking in the herd,
the first 34 elements of its s are equal to 1, and the remaining 66 elements are
unknown, or not specified yet, because the animal has not had the opportunity
to live through those next 66 months. This is a censored survival function.
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16.3 Random Regression Analysis

A population survival function is shaped similar to a lactation curve, and
so using Legendre polynomials of order 4 (5 covariates) may be appropriate for
fitting the general shape. However, because the scale goes from 1 down to 0, at
the beginning of the curve many animals are alive, so that the variation in the
first months after calving is very small. In general, the variance is the frequency
times one minus the frequency, which has the greatest value when the frequency
is 0.5. Then the variance becomes smaller again until the end when most animals
are dead. Thus, a quadratic shape for the variances seems appropriate. Legendre
Polynomials of order 2 (3 covariates) will be used to model the random animal
additive genetic, and permanent environmental effects.

Cows calve for the first time in different year-month subclasses, and at
different ages and seasons, and therefore, there would be separate fixed curves
for year-month of first calving, and for age-seasons of first calving. There could
be different survival functions within each herd-year-season of first calving, for
HYS as a random factor. To account for production, cows should be divided into
production level groups within herd, from low to high. Animal additive genetic
effects and animal PE effects would also be modelled with random regressions.
The observation for a cow is its survival function. For culled cows, the survival
function has 100 data points, and for censored cows, the survival function has less
than 100 data points.

16.3.1 Example Data

In Table 16.1 are the culling times of cows in one year-month of first calving
and one age-season of first calving, from two HYS. There were just 3 production
levels identified across HYS, in this case. Culling times are number of months
after first calving.

A model is

ytijk =
5∑

m=1

bimztm +
3∑
`=1

hj`zt` +
3∑

n=1

aknztn +
3∑

f=1

pekfztf + etijk

where

ytijk is either 1 or 0, depending on alive or dead at time t, for animal k in HYS
j and production level i.

bim are fixed regression coefficients for production level i of order 4, (5 covariates).

hj` are random regression coefficients for HYS j of order 2, (3 covariates).
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Table 16.1: Example survival data on cows. Production levels are High, Medium,
and Low

HYS Cow Sire Dam Prod. Cull
Level Time

1 17 1 4 L=low 36
1 18 1 5 M=medium 42
1 19 1 6 M 46
1 20 2 7 M 50
1 21 2 8 M 30
1 22 2 9 H=high 60
2 23 1 10 L 20∗
2 24 1 11 M 25
2 25 2 12 M 58
2 26 2 13 H 49∗
2 27 3 14 L 40∗
2 28 3 15 M 51
2 29 3 16 H 68

∗ indicates censored records

akn are random regression coefficients for animal additive genetic effects of order
2.

pekf are random regression coefficients for animal permanent environmental ef-
fects of order 2.

zt− are Legendre polynomials dependent on time t, and

etijk are residual effects for each observation, where the variance depends on time
t.

Every uncensored animal has 100 data points, and every censored animal
has number of observations equal to its censored last month alive. Thus, in total
for this example there were 1109 observations, on 13 animals.

The covariance matrices for the random factors are of dimension 3.

G =

 0.246 −0.172 0.332
−0.172 0.246 −0.246

0.332 −0.246 0.451

 ,

P =

 0.197 −0.138 0.266
−0.138 0.197 −0.197

0.266 −0.197 0.361

 ,
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and

H =

 0.560 −0.046 −0.023
−0.046 0.883 0.009
−0.023 0.009 0.044

 .

The residual variance was allowed to vary from 0.01 at months 1 and 100, to 0.25
in the middle months around 40 to 55 months, based on phenotypic population
variances in each month after calving.

There were 147 equations in the MME for this example, 5 for each of three
production levels, 3 for each of two HYS, and 3 for each of 29 animal additive
genetic effects, and for 13 animal PE effects.

16.3.2 Production Level Solutions

The solutions for the production levels are in Table 16.2.

Table 16.2: Production Level Regression Coefficients

Level b0 b1 b2 b3 b4
Low 0.538 -0.599 0.078 0.098 -0.043
Med. 0.607 -0.563 0.085 0.112 -0.033
High 0.918 -0.524 -0.168 0.117 0.093

The interpretation of the above numbers is difficult to visualize. Thus, it
is better to use the regressions to calculate expected frequencies for each month
after calving and then plot the production level survival functions, as shown in
Figure 16.3.

Note that the production level survival functions go above 1 and below
0, which are outside the natural range. This could be due to the small number
of observations and the fact that there were no cows below 20 months or above
68 months, thus the fit on the two ends is not good. The reason could also be
that the results on the ends are artifacts of the Legendre polynomial functions.
Alternatively, production levels could be modelled by 100 classes per level, if there
were enough observations to fill all of the classes.

The results show that the high production level had greater survival than
either medium or low. Galbraith (2003) found this to be true in Ayrshire and
Jersey cow populations in Canada. Bigger differences in survival functions were
found when conformation score levels were used in place of production levels.
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Figure 16.3
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16.3.3 HYS Solutions

The HYS solutions are in Table 16.3.

Table 16.3: HYS Regression Coefficients

HYS h0 h1 h2

1 -0.0413 0.0059 0.0079
2 0.0413 -0.0059 -0.0079

Based on the plots in Figure 16.4, HYS 2 had the greater survival function.
One could rank HYS on the basis of h0. Positive h0 lead to greater survival, but
plots should always be made because the sign and magnitude on the other two
coefficients could have an impact.

16.3.4 Sire Breeding Values

The solutions just for sires 1, 2, and 3 are given in Table 16.4, and a plot
of their survival function is in Figure 16.5. Neither the Table nor the Figure help
to determine the better sire.
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Figure 16.4
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Table 16.4: Sire Regression Coefficients

Animal a0 a1 a2

1 0.0092 0.0255 0.0226
2 0.0085 0.0039 0.0044
3 -0.0177 -0.0294 -0.0269

The sire EBV for each month after calving could be added to the popu-
lation survival function, and then plotted as in Figure 16.6. Now the differences
among sires are not very large, at least through 40 to 80 months, but the differ-
ences are greater at the end of the 100 month period. This is due to the small
number of cows in the analysis, and also due to the heritability of the trait being
very low.

To rank sires for survival, one could look at one point, say 50 months after
first calving, and compute the value at that time for each sire, from their survival
functions (Figure 16.6). Thus sire 1 would have the lowest survival at 50 months
of 0.378, then sire 2 at 0.392, and sire 3 at 0.399.

Other options for ranking sires would be

• Use a0, the intercept parameter, to indicate the overall level. Sire 1 would
be the best sire in this case.

• Do a principal component analysis of G to form functions of the animal
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Figure 16.5
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solutions for ranking purposes.

Figure 16.6
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Cows also have solutions, but these are less reliable than for sires. Pre-
dictions of survival for censored cows may be of interest. Obviously predictions
for 100 months would be subject to more error, than predictions for 50 months
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or earlier. Below (Table 16.5), are the three censored cows in the example, and
their predicted survival EBV for 50 months after first calving. Differences in
probabilities are minor, but tend to follow their sires’ predictions.

Table 16.5: Censored Cow EBVs for 50 months

Cow Current EBV
Age 50 mo

23 20 0.383
26 49 0.390
27 40 0.402

Solutions for animal PE effects are not shown.
The RRM would be similar to a Multiple Trait (MT) analysis of survival

(stayability), if the MT analysis considered each month after calving as a trait
(i.e. 100 traits). Thus, the MT analysis is just a much smaller RRM. On the other
hand, the RRM for animal additive genetic effects considers just 3 covariates per
animal to determine the entire shape of the animal’s survival function while the
MT analysis looks at a few specific points in time. The RRM uses more informa-
tion in the analysis, and includes animal permanent environmental effects (which
incorporate other correlated effects along the survival curve of each animal).

16.4 Proportional Hazard Model

In 1984, Smith and Quaas applied a failure time analysis to productive
lifespan of bull progeny groups, which was further extended by Smith and Al-
laire (1986). Ducrocq et al. (1988a,b) gave justification for using a Weibull
model and how to estimate variances in survival analyses. In 1994, Ducrocq and
Solkner presented their software package to analyze survival data, and called it
the “Survival Kit”. A good explanation of the methods in the programs is given
by Kachman (1998).

The survival and hazard functions were described as following a Weibull
model (Figure 16.2). The two functions for the population are

S(t) = exp−(λt)ρ and
h(t) = ρλ(λρ)ρ−1

where λ is a scale parameter, and ρ is a shape parameter known as the Weibull
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modulus. For Figure 16.2, ρ was found to be equal to 1.7465, which is greater
than one and implies that the failure time or mortality is increasing as animals
age. If ρ = 1, then mortality is random with respect to time and constant, and if
ρ < 1, then mortality decreases with time, so that most failures are early in life
rather than later.

Individual functions are based on risk factors, ηi, which either increase or
decrease survival from the population curves for individual i. The risk factors can
be modelled as a linear model,

ηi = x′ib + z′iu

which can be a sire or animal model, and where b are fixed factors affecting
survival, like production level, sex of animal, and year-months of calving, and u
are random factors such as herd-year-seasons, and animal additive genetic effects.

The survival function and hazard function can be re-written to include the
risk factors as

S(t, ηi) = exp−t
ρ expηi

for η = ρ ln(λ), and

h(t, ηi) = ρ tρ−1 expηi

= h0(t) expηi

where h0(t) is the baseline hazard function where animals have no risks, η = 0.
Using a parametric approach, the joint likelihood of survival times and ηi

is maximized. Assuming that ρ is known, the computational steps are

1. With current estimates of b̂ and û, for each animal, calculate

ηi = x′ib̂ + z′iû.

2. Let

qi = expρ ln(t)

rii = qi expηi

Yi = wi − qi expηi + riiηi

where wi = 1 if the record is uncensored, and wi = 0 if the record is censored.
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3. Obtain new estimates of b̂ and û from mixed model-like equations,(
X′RX X′RZ
Z′RX ZRZ + G−1

)(
b̂
û

)
=

(
X′y
Z′y

)
,

where X contains the vectors x′i, Z contains the vectors z′i, R is a diagonal
matrix with diagonals equal to rii, and y is a vector of Yi.

The steps are iterated until convergence is reached.
The example data were analyzed, where the risk factors were modelled as

ηi = bj + hk + ai,

for

bj is the fixed level of production effect (one of three groups),

hk is a random herd-year-season effect (one of two), and

ai is a random animal additive genetic effect.

The solutions, upon convergence, were

b̂′ =
(
−7.1943 −6.6202 −7.5019

)
,

for the production level effects,

ĥ′ =
(

0.1153 −0.1153
)
,

for the herd-year-season effects, and animal additive genetic solutions are
in Table 16.6.

The solutions can be manipulated in different ways. Suppose we want to
predict the percentage of live daughters of the sires at 60 months after first calving
in low production herds and an average herd-year-season. For sire 1,

η1 = b̂1 + â1

= −7.1943 + 0.0445 = −7.1498

S(60, η1) = exp−t
ρ expη1

= 0.3675

For sires 2 and 3, the results were 0.3938 and 0.3902, respectively. The random
regression results (for month 50) were 0.378, 0.392, and 0.399, for sires 1, 2, and
3, respectively.
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Table 16.6: Animal Genetic solutions from Survival Analysis

Animal âi Animal âi
1 0.0445 17 0.0664
2 -0.0273 18 0.0187
3 -0.0172 19 0.0051
4 0.0294 20 -0.0412
5 -0.0024 21 0.0213
6 -0.0114 22 0.0036
7 -0.0184 23 0.0117
8 0.0233 24 0.0761
9 0.0115 25 -0.0441
10 -0.0070 26 -0.0486
11 0.0359 27 -0.0422
12 -0.0203 28 -0.0186
13 -0.0233 29 0.0091
14 -0.0224
15 -0.0066
16 0.0118

In the random regression model, sires could rank differently at month 20
compared to month 80, but in the PH model, sires would rank the same at any
month from 1 to 100 months after first calving. This is because there is only one
parameter per animal being estimated, which applies to the entire time scale.

16.5 Comments

The model for the risk factors could be more complex.
Ducrocq and Solkner (1998) included the following fixed and random

factors:

• year-season of first calving effects with two seasons per year,

• lactation number and days in milk within lactation, with 6 lactations and
days in milk changes at days 30, 60, 150, and 240, and date dried off,

• ten classes of production levels within herds for milk yield, and five for fat
and protein contents,

• herd size classes (4) and herd size variation changes (5), to know if herds
are increasing or decreasing in size, culling would be greater in herds that
are decreasing in size,



274 CHAPTER 16. SURVIVAL

• herd-year-season random effects, with two seasons per year, and

• animal additive genetic effects.

In Austria, random herd-year-season effects were used due to small herd
sizes, and also variation in herd size was omitted, but replaced with the average age
of herdmates (9 groups). Cows sold for dairy purposes were treated as censored
records. In France, the estimates of heritability from the survival analysis were
0.16 to 0.22 depending on breed.

The Survival Kit is used extensively around the world by many countries
to evaluate length of productive life. The random regression model may be more
easily applied than the survival kit, and allows animals to re-rank over time. A
comparison was given by Jamrozik et al. (2008).
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Chapter 17

Genomics Era

LARRY SCHAEFFER
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17.1 Infinitesimal Model

All of the previous chapters, and all of the years of genetic evaluation of
dairy cattle have assumed that the Infinitesimal Model holds true. This model
was described by Fisher (1918). The assumptions of this model are that

• there are an infinite number of genes (loci) that influence milk production,
and

• each of those loci contribute an infinitesimally small amount to the overall
total genetic merit of an animal.

Genetic evaluation methods were designed to estimate the genetic merit due to
the sum total of the effects of the infinite number of loci. One reason for using
this model is that science could not yet determine the correct number of loci that
were involved, and whether each loci had the same size of effect.

With the discovery of Deoxyribonucleic Acid by Watson and Crick (1953)
and the identification of four base pairs making up DNA, scientists have been
trying to find loci with large effects (major genes) and trying to determine the
actual number of loci. In the 1970’s molecular geneticists promised the discovery
of some major genes, such that when found there would be a genetic test to
discover the genotype of individuals for that gene. That is, which combination of
alleles did an individual have. Animals with favourable genotypes would be kept
for breeding and others would be culled. There would be no need to calculate
genetic evaluations any longer.

279



280 CHAPTER 17. GENOMICS ERA

For many years the molecular geneticists used markers, which were fairly
large segments of DNA (100 to 1000 base pairs in length), but the markers were
not very close to the actual genes. Sometimes the marker genotypes were not
consistently determined, and so selection on marker genotypes was not very suc-
cessful. Markers were generated by finding enzymes that cut DNA at specific
locations. Microsatellites were one of the smaller segments of DNA that could be
used as a marker. However, there were not a lot of microsatellites to be found.

The success of a Marker Assisted Selection (MAS) scheme depended on
how close the marker was to the actual gene locus. The term Linkage Disequilib-
rium (LD) was used to indicate the usefulness of a marker. High LD meant that
the marker was close to the gene. To be useful, markers needed an LD of 30% or
more. High LD means that an allele of the marker is on the same stretch of DNA
as the favourable allele of the gene. Recombinations between the marker allele
and the gene allele would be few over hundreds of thousands of meiosis events.

17.2 Single Nucleotide Polymorphisms

The Human Genome Project (HGP) (1984) was started with the goal of
sequencing all of the DNA, which was thought to be 5 billion base pairs in length.
The first rough draft of the sequence was available in June 2000, and the final
version was published in April 2003. Scientists knew the base pair sequences that
indicated the start of a gene, and the estimate of the number of genes dropped
continually during the project and finally settled at around 25,000 genes. Thus,
the number of genes was not infinite and could be counted. The genes, however,
only accounted for 5% of the genome or less. What was the purpose of the other
95% of the genome? At the time it was called “junk” DNA, but now scientists are
finding that this DNA does have a purpose.

During the project scientists discovered Single Nucleotide Polymorphism(s)
(SNP) by comparing DNA sequences of different individuals. A SNP was where
a single base pair difference was detected for one individual compared to the ma-
jority of individuals. SNPs were found to be everywhere in the genome, millions
of them. By 2004 there was a SNP panel developed such that a dairy bull or cow
could be genotyped for 5000 SNP at one time. The SNP that were chosen tried to
cover the entire genome evenly. It was not known if those SNP were close to any
genes, and indeed, the location of some of the 5000 SNPs in the genome was not
known. The gaps between any two SNPs could have contained hundreds of genes.
So the goal was to find more SNP and to develop panels that could test a million
SNP at one time, and to ensure that the SNP were evenly spaced throughout the
genome.

Dairy bulls in Canada were initially genotyped with a 5000 SNP panel,
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known as the 5K chip, and the EBV of the bulls for many traits were collected.
In 2004, the cost of genotyping a bull was over $300 US, and to genotype 400
bulls cost more than $120,000. First, DNA samples had to be collected from the
bulls and sent to a lab for processing. The second step was to extract the DNA
from the sample, and then to run it on the 5K chip. A reader then scanned the
chip results and based on the colour of the reaction, the genotype for each SNP
could be determined. The results were then returned to the person who requested
the genotyping. All of this took 1 to 3 months.

After receiving the genotype results, (5000 pieces of information per bull),
the genotypes had to be verified, which meant comparing son genotypes to their
sires’ genotypes to detect inconsistencies, or impossible genotypes. Sometimes
genotypes could not be determined by the scanner because the reaction of the
DNA on the chip was not conclusive. Also, checks were made to determine the
frequencies of the genotypes for each SNP. In some cases the genotypes for a
SNP were identical for all sampled bulls, and therefore, that SNP marker was not
informative.

The locations of the SNPs had to be known, and therefore, comparisons
to available maps had to be made. The order of some SNPs was not confirmed,
and some SNPs were allocated to the wrong chromosomes. In the end, there were
usually much fewer than 5000 SNP genotypes available.

17.3 Example Data

Below, in the Table 17.1, are records on fat yields of cows in one herd-
year-season, with 4 different age groups within first lactation.

Table 17.1: Fat yield data on first lactation cows from one herd-year-season

Animal Sire Dam Animal Sire Dam Age Fat Yield
1 0 0 11 9 7 4 296
2 0 0 12 9 2 1 357
3 0 0 13 8 3 4 387
4 0 0 14 1 4 1 303
5 0 0 15 1 6 2 363
6 0 0 16 1 10 4 301
7 0 0 17 8 4 1 297
8 0 0 18 8 5 4 338
9 0 0 19 8 3 3 376
10 0 0 20 1 6 2 318
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The relationship matrix can be partitioned into

A =

(
I A12

A′12 A22

)
,

where

A12 =
1

2



0 0 0 1 1 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0


,

A22 =
1

4



4 1 0 0 0 0 0 0 0 0
1 4 0 0 0 0 0 0 0 0
0 0 4 0 0 0 1 1 2 0
0 0 0 4 1 1 1 1 0 1
0 0 0 1 4 1 0 0 0 2
0 0 0 1 1 4 0 0 0 1
0 0 1 1 0 0 4 1 1 0
0 0 1 0 0 0 1 4 1 0
0 0 2 0 0 0 1 1 4 0
0 0 0 1 2 1 0 0 0 4


.

Note that the relationships are either one-half or one-quarter, and that
none of the cows are inbred.

A typical animal model with age groups and animal additive genetic effects
was applied to the data. A variance ratio for residual to additive genetic variances
of 3.08 was used. The EBV from the analysis are given in the Table 17.2.

Now animals 7 through 14 have been genotyped with a 50K SNP chip.
Animals 8 and 9 are sires, and the others are females from the herd. In the Table
17.3, are the results for 10 SNP. Typically there are more SNPs than number of
genotyped animals.
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Table 17.2: EBV for animals in Example data

Animal EBV Animal EBV
1 -5.10 11 -6.49
2 4.83 12 7.44
3 7.15 13 13.08
4 -4.83 14 -6.62
5 0.75 15 0.60
6 0.00 16 -7.71
7 -4.45 17 -3.24
8 4.72 18 3.48
9 0.38 19 5.93

10 -3.44 20 -5.69

Table 17.3: SNP genotypes for 10 markers: 1=AA, 2=Aa, 3=aa genotypes

Animal [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
7 1 2 2 1 2 3 2 2 2 1
8 2 2 2 3 2 3 1 2 1 1
9 1 1 2 3 2 2 2 2 1 1
10 3 3 3 1 2 2 2 2 2 2
11 1 2 2 2 2 3 3 2 2 1
12 1 1 2 3 3 2 3 2 1 2
13 3 2 2 3 2 3 1 2 2 1
14 1 2 2 3 2 1 1 1 1 2

17.4 Association Studies

An association study is where SNP markers are used, one marker at a
time, to determine its effect on the trait of interest. To illustrate we will use
the small example of the previous section. The observations are the EBV of the
genotyped animals, and the assumption is that these EBV have high accuracy
(0.99). In practice, bull EBVs based on many thousands of daughters are used as
the observations. We will assume the EBV in this example are highly accurate,
just to illustrate the methods.

Markers are examined before the regression models are applied. The allele
frequencies are estimated for each marker and if the frequency of the less frequent
allele (minor allele frequency) is less than 0.10, then that marker may not be
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analyzed. Markers 8, 9, and 10 did not have any genotype 3 animals in the
example for instance.

The EBV are regressed on the marker genotypes, in this case marker 1.

−4.45
4.72
0.38
−3.44
−6.49

7.44
13.08
−6.62


=



1
1
1
1
1
1
1
1


µ +



1
2
1
3
1
1
3
1


b+ e

The least squares result is µ̂ = −5.26, and b̂ = 3.59. The estimate of the residual
variance was 47.98, and the resulting F-value to test the significance of b̂ was 1.58.
The F-value had to be above 5.99 to be significant at the 0.05 level.

The results for all 10 markers are given in the next Table (17.4).

Table 17.4: Association Tests of 10 SNP markers

Marker b̂ σ2
e F -stat Sign.

1 3.59 47.98 1.58 0.26
2 -3.72 54.01 0.74 0.43
3 -4.59 57.55 0.32 0.60
4 4.28 42.66 2.53 0.17
5 7.84 51.65 1.04 0.35
6 3.03 54.69 0.65 0.46
7 -1.98 57.44 0.33 0.59
8 8.22 50.76 1.17 0.33
9 -1.80 59.54 0.11 0.76
10 -2.32 58.94 0.17 0.70

Marker 4 was the most significant of the ten examined, but remember
there were 50K SNP genotypes on each animal, all of which need to be tested.
The lack of significance is due to the inaccurate EBV that were used as well as
the small number of animals.

Because so many markers are being tested at one time, and because EBV
for several traits may be analyzed, the significance tests must use higher critical
values to be conservative in reporting significant results. With 50,000 SNP, for
example, and a 0.05 significance level, 2500 SNP could be significant simply due
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to chance. The Bonferoni correction has been widely used.
After significant markers are discovered, then one must check if those mark-

ers are near to possible major genes that could have biological significance on the
trait of interest. If yes, then more studies using additional SNPs close to that gene
could be used to find out more about the gene and its functions. If the marker
is highly significant, then a test for that marker alone could be developed and
offered to producers, so that they may increase the frequency of the favourable
allele for that marker in their herds.

One such important gene has been found in dairy cattle, known as the
DGAT1 gene located on chromosome 14. In New Zealand, this gene was found to
have a 6 kg effect on milk fat yields, with a corresponding decrease in milk protein
and milk volume (Spelman, 2002). This gene was patented, but later found that
the majority of cattle have the favourable allele, such that testing and selecting
for it is not of great significance.

There have been relatively few genes with large effects found in dairy cattle
that could be exploited by MAS. The infinitesimal model seems to have been a
very realistic model for dairy cattle genetic evaluations.

17.5 Genome Wide Selection

In 2001, Meuwissen et al. showed through simulation that if you had
thousands of SNP markers spread evenly through the genome then you could
simultaneously estimate the small effects of each SNP genotype on the overall
trait. Thus, if you genotyped animals with the 10K chip, then you would estimate
genetic effects for those 10,000 SNP from EBV of a group of genotyped bulls.
Then you could apply those estimates to a new group of unproven bulls that
are genotyped, but which do not have any progeny with records, and obtain an
estimate of their BV. They showed that the accuracy of the Genomic Estimated
Breeding Value (gEBV) could be as high as 0.81 (in their simulations). That
accuracy is much greater than the accuracy of a simple parent average prediction
of that bull’s EBV, which is usually less than 0.40. Also, you could genotype the
young bull at birth and obtain a gEBV immediately, and thereby save 5 years
of progeny testing a bull that may not be suitable. Schaeffer (2006) showed how
this strategy could double genetic progress in dairy cattle.

In reality, of course, the cost of genotyping enough bulls was great. The
first studies in Canada involved less than 500 proven bulls. The bulls had to be
split into two groups. One group was used to estimate the effects of 10K SNP, and
the other group was used to validate the accuracy of predictions (gEBV). Instead
of achieving an accuracy of 0.81 as in Meuwissen et al., (2001), the validation
accuracy was 0.50 to 0.60 The gain in genetic progress, however, was not com-
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ing from increased accuracy of the gEBV over the parent average, but from the
fact that selection decisions on young bulls were being made 5 years earlier than
current progeny test schemes. Genetic progress was due to significantly reduced
generation intervals.

The USDA started a study around 2006 where several thousand dairy bulls
of various breeds and from different countries were to be genotyped. By that time,
everyone was using a 10K chip. The project involved developing a new 50K chip.
Over 600,000 SNP were screened in order to pick 50K that were suitable.

Also, by this time, the cost of genotyping was coming down to about $100
US per animal for 50K chips. More than 3000 bulls had been genotyped when
studies began and shortly thereafter, gEBV were calculated in the United States
and Canada and made official.

17.5.1 Least Squares Estimation of SNP Effects

As in Meuwissen et al. (2001), and similarly in Xu (2001), one could
estimate all of the SNP effects simultaneously using least squares equations. The
model is

y = 1µ + Sb + e,

where

y is the vector of EBV from daughters on animals that have been genotyped,

µ is an overall mean effect,

b is a vector of fixed SNP effects to be estimated where S is an N by m matrix,
with N equal to the number of genotyped animals, and m equal to the num-
ber of SNP markers, and the elements are equal to -1, 0, and 1 (genotypes
minus 2), so that -1 is genotype AA, 0 is Aa, and 1 is aa,

e is the residual error.

The residual variance is assumed to be Iσ2
e because the EBV in y are assumed to

have very high accuracy.
If EBV vary in accuracy, then the residual variances could be varied to

reflect the different accuracies. Let

X =
(

1 S
)
.

One problem with a least squares approach is that m is usually much
greater than N , more SNPs than genotyped animals. Hence the LS equations are
less than full rank and can not be inverted. The solutions are also not unique.
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Using ten SNPs and eight genotyped animals from the example data, the
LS equations are

X′X =



8 −3 −1 1 3 1 3 −1 −1 −4 −5
−3 7 3 1 −2 −1 0 −2 1 3 2
−1 3 3 1 −3 −1 0 −1 0 2 1

1 1 1 1 −1 0 0 0 0 0 0
3 −2 −3 −1 7 1 0 −2 −1 −4 −2
1 −1 −1 0 1 1 0 1 0 −1 0
3 0 0 0 0 0 5 0 1 0 −4
−1 −2 −1 0 −2 1 0 5 1 1 1
−1 1 0 0 −1 0 1 1 1 1 0
−4 3 2 0 −4 −1 0 1 1 4 2
−5 2 1 0 −2 0 −4 1 0 2 5



,

and

X′y =



4.61
19.38
−11.26
−3.44
26.89
7.44

13.47
−10.23

6.62
−5.92
−7.23



.

A Moore-Penrose inverse of the coefficient matrix was used to obtain a solution
(because the order of the equations was small in this case) in Table 17.5.

Note that the solutions in Table 17.5, do not agree with the solutions from
the association study where each SNP was analyzed separately. In fact, the SNP
solutions in Table 17.5 may have no relationship at all to the actual size of SNP
effects in reality. The SNP genotypes are merely covariates that may or may not
help to explain variation in EBVs.

Because there were more SNPs than data, the above model fits the data
perfectly. That is, y = 1µ̂+ Sb̂. The validation test is where the above solutions
are applied to animals not included in the analysis.

Suppose animal 20 was genotyped, shown in Table 17.6, then multiplying
its genotype times the SNP effect solutions and adding up the results and the
overall mean, the genomic EBV (gEBV) for animal 20 would be -9.26. This can
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Table 17.5: SNP effect solutions and overall mean

Solution
mean 1.929518

Marker 1 5.864284
2 -7.635916
3 -2.344765
4 1.255575
5 8.271216
6 2.817283
7 -3.292362
8 1.917075
9 2.497527
10 2.079857

be compared to its actual EBV from the animal model analysis of -6.62.

Table 17.6: SNP effect solutions and overall mean

Solution Animal 20 Accumulation
Genotypes

mean 1.929518 1.929518
Marker 1 5.864284 -1 -3.934766

2 -7.635916 1 -11.570682
3 -2.344765 0 -11.570682
4 1.255575 1 -10.315107
5 8.271216 0 -10.315107
6 2.817283 -1 -13.132390
7 -3.292362 -1 -9.840028
8 1.917075 -1 -11.757103
9 2.497527 1 -9.259576
10 2.079857 0 -9.259576

The validation data set would need to include a large number of animals
that have accurate EBV and genotypes, but which were not included in the es-
timation of the SNP effects. The correlation of the gEBV and the animal’s actual
EBV would then be an indication of the accuracy of the gEBV.



17.5. GENOME WIDE SELECTION 289

17.5.2 Using BLUP

Meuwissen et al. (2001) also considered a BLUP analysis using a variance
ratio added to the diagonals of the SNP equations in the LS system. Suppose we
add 1 to the diagonals. This would remove the dependencies among the columns
of S. An assumption is that the SNPs are members of a population of SNP effects
with an overall mean of zero and variance equal to that of the residual variance.
Obviously, the correct variance would need to be estimated. The results using a
ratio of 1 are given in the next two tables.

Another analysis was performed using a variance ratio of 10, and those
results are also given in the next two Tables (17.7, 17.8).

Table 17.7: BLUP Estimates of SNP Effects

Solution Solution
ratio=1 ratio=10

µ 0.0787 -0.0634
Marker 1 4.2626 1.4627

2 -3.1732 -0.7886
3 -0.8258 -0.2317
4 2.9590 1.5048
5 3.2227 0.6289
6 2.2377 0.8251
7 -0.7794 -0.4013
8 1.8796 0.5752
9 0.1762 -0.1536
10 0.5173 -0.1779

Using these estimates to predict animal 20, the predictions were −7.56 for
a ratio equal to 1, and −1.96 for a ratio equal to 10. The smaller ratio seems to
produce gEBV that agree better with the animal model EBV than the ratio of
10.

17.5.3 BLUP with Unequal Ratios

Meuwissen et al. (2001) also proposed allowing the ratio for each SNP to
differ depending on the magnitude of the SNP effects (squared). The larger is the
SNP effect, the larger would be the variance for that SNP, and the smaller would
be the ratio. They described a Bayesian method of estimating the correct ratio.
Subsequently there have been several revised proposals from various researchers.
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Table 17.8: BLUP gEBV of genotyped animals

Animal gEBV gEBV
ratio=1 ratio=10

7 -5.42 -2.03
8 5.36 3.00
9 1.25 1.10
10 -2.62 -1.13
11 -3.24 -0.92
12 4.22 1.15
13 9.80 4.31
14 -4.74 -0.87

In Table 17.9, the LS SNP effect estimates were squared and then divided
into the variance of the EBV, which was 52. While not the best procedure, these
ratios were used on the diagonals of the SNP equations.

Table 17.9: SNP effect solutions and overall mean from LS analysis

Marker Solution Squared Ratio
1 5.864284 34.39 1.51
2 -7.635916 58.31 0.89
3 -2.344765 5.50 9.45
4 1.255575 1.58 32.91
5 8.271216 68.41 0.76
6 2.817283 7.94 6.55
7 -3.292362 10.84 4.80
8 1.917075 3.68 14.13
9 2.497527 6.24 8.33
10 2.079857 4.33 12.01

The results from the LS, BLUP with ratio equal to 1, and BLUP with
variable ratios are shown in Table 17.10 for comparisons. Using a different ratio
for each SNP based on the magnitude of its effect made many of the SNP effect
estimates much smaller than in the LS analysis, and a few (SNPs 1, 2, and 5) still
had relatively large effects. Gianola (2010) questioned whether SNPs should be
considered as random effects, and what kind of distribution SNP effects follow.
Ideally, there should be more animals genotyped than there are SNP markers to
estimate, but this will not happen for a long time. We already have many times
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more genotyped than SNP markers, albeit females.

Table 17.10: SNP effect solutions and overall mean

LS BLUP BLUP
ratio=1 varied

mean 1.93 0.08 0.49
Marker 1 5.86 4.26 4.71

2 -7.64 -3.17 -5.18
3 -2.34 -0.83 -0.30
4 1.26 2.96 0.32
5 8.27 3.22 3.94
6 2.82 2.23 0.95
7 -3.29 -0.78 -0.89
8 1.92 1.88 0.18
9 2.50 0.18 -0.11
10 2.08 0.52 -0.20

The gEBV from the BLUP analysis with variable ratios for the SNP effects
are shown in the Table 17.11. A prediction for animal 20 was −9.45.

Table 17.11: gEBV for genotyped animals from BLUP with variable variance
ratios

Animal gEBV
7 -3.38
8 2.96
9 1.60
10 -0.60
11 -3.95
12 4.45
13 7.56
14 -4.04

A problem with the direct approach of estimating SNP effects becomes
obvious when there are 600,000 SNP effects to estimate at one time and around
100,000 animals with phenotypes or EBVs. Solving for 600,000 effects simultan-
eously could give too many dependencies among the SNP markers. If BLUP with
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variable variance ratios was used, there would be many variances to estimate, and
this could take a long time. With so much information available, one begins to
ask if all of the SNPs are necessary for accurate gEBV.

17.5.4 Relationships Among Animals

The matrix S was defined earlier to be a matrix with N rows and m
columns containing the SNP genotypes (expressed as -1, 0, and 1). Early on it
was noted that a matrix of relationships based upon the SNP genotypes could be
created, as

G = SS′/(
∑

2piqi),

where pi is the frequency of one allele at marker i, and qi = (1− pi). Thus, in an
animal model A could be replaced by G. There were two immediate drawbacks.

1. Not all animals with phenotypes have been genotyped, and therefore, G
could not be calculated for all animals with data.

2. The matrix G did not have an easy inverse like Henderson’s method for
A−1.

The procedure became a Two-Step procedure. First step, use the EBVs
on the genotyped animals, and construct the relationships among them using the
SNP genotypes.

V ar(a) = Gσ2
a

Construct MME using the model

y = 1µ + Ia + e,

where

y is the vector of highly accurate EBV on the genotyped animals,

µ is the overall mean,

a are the animal additive genetic values, and

e is the vector of residual effects.

The MME are (
1′1 1′

1 I + G−1k

)(
µ̂
â

)
=

(
1′y
y

)
,

and k is the residual to additive genetic variances, which will be much smaller
than the same ratio when y is a vector of phenotypes (i.e. single records) rather
than EBVs. The solution to the MME give the genomic EBV, gEBV directly.
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For the example data and genotyped animals,

G =
256

1134



4 1 1 0 3 0 0 −1
1 5 3 −1 1 1 4 2
1 3 5 −3 2 4 1 3
0 −1 −3 4 −1 −3 0 −2
3 1 2 −1 4 2 0 −1
0 1 4 −3 2 6 −1 2
0 4 1 0 0 −1 5 0
−1 2 3 −2 −1 2 0 6


where

∑
2piqi = 1134/256, and the frequencies of the 10 SNP markers were

1

16

(
11 9 7 5 7 5 9 9 12 13

)
.

Note that there are some negative relationships in G which would not normally
occur in A. Also, some diagonal elements are greater than 1 which indicates in-
breeding, however, the homozygosity picked up in G includes the result of identity
by chance, while in A the inbreeding is due to identity by descent.

Solving the MME give the following results (Table 17.12), which are the
gEBV. The assumed variance ratio was 1. The overall mean was estimated to be
-0.24.

Table 17.12: gEBV using genomic relationship matrix

Animal gEBV
7 -3.22
8 4.37
9 1.53
10 -1.59
11 -1.43
12 2.17
13 6.64
14 -1.89

The second step of the procedure is to incorporate the gEBV into the EBV
of all other non-genotyped animals. Different methods are followed in various
countries for this step. One problem is the genetic base of gEBV versus EBV,
and so the base must be made equal for both results. Similarly, the variances of
gEBV and EBV need to be made the same.
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17.5.5 One-Step Method

To avoid the ad hoc nature of the second step in the Two-Step Method,
Misztal et al. (2010) proposed a one step procedure in which all animals are
evaluated simultaneously in one set of equations. Ducrocq and Legarra (2011)
described a feasible strategy for applying the One-Step Method, and that will be
shown here. The original observations are analyzed in this method and not EBVs.
Let the model be

y = Xb + Za + e

with the usual definitions of the vectors and matrices. Partition a into

a =

(
a1

a2

)
,

where subscript 1 indicates animals not genotyped, and 2 denoting genotyped an-
imals, and correspondingly partition Z and A, the design matrix and relationship
matrix, respectively, as

Z =
(

Z1 Z2

)
,

A =

(
A11 A12

A21 A22

)
.

The usual MME (ignoring genotype relationships) are X′X X′Z1 X′Z2

Z′1X Z′1Z1 + A11k A12k
Z′2X A21k Z′2Z2 + A22k

 b∗

a∗1
a∗2

 =

 X′y
Z′1y
Z′2y

 .

Misztal et al. (2010) show that the correct equations including G are as follows: X′X X′Z1 X′Z2

Z′1X Z′1Z1 +A11k A12k
Z′2X A21k Z′2Z2 +A22k +G−1k −A−1

22 k

 b̂
â1

â2

 =

 X′y
Z′1y
Z′2y

 .

Ducrocq and Legarra (2011) assume the differences between solutions to the above
equations are (

â1

â2

)
=

(
a∗1 + d1

a∗2 + d2

)
,

where d1 and d2 are differences due to genotype relationships. They showed that

d1 = A12A
−1
22 d2
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then substitution of this equality into the above equations (page 294), gives an
equivalent set of equations below.


X′X X′Z1 X′Z2 0
Z′1X Z′1Z1 + A11k A12k 0

Z′2X A21k Z′2Z2 + A22k −A−1
22 k

0 0 −A−1
22 k (A−1

22 + [G−A22]−1)k




b̂
â1

â2

d2

 =


X′y
Z′1y
Z′2y
0

 .

Solving the equations can be done in two pieces in an iterative manner. Start
with d2 = 0.

1. Solve the following equations X′X X′Z1 X′Z2

Z′1X Z′1Z1 +A11k A12k
Z′2X A21k Z′2Z2 +A22k

 b̂
â1

â2

 =

 X′y
Z′1y
Z′2y +A−1

22 k d2

 .

2. Solve for d2 using

(A−1
22 + [G−A22]−1)d2 = A−1

22 a2

Repeat parts 1 and 2 until convergence is achieved. Now all animals’ EBV are
influenced by the SNP genotypes.

Tables 17.13 and 17.14 contain results for the animal model using A only,
and for the animal model incorporating G into A. The two models give close
agreement for the age group solutions and similar rankings of animals.

Table 17.13: Age group solutions from animal models

Age With With
Group A G

1 319.81 318.44
2 343.05 342.01
3 370.07 369.20
4 329.91 328.42

17.5.6 Not All SNPs

In Israel, Weller et al. (2012) do not believe that more SNP markers are
better for accuracy of gEBV. They considered a random subset, a subset of evenly
spaced markers, and a subset of SNPs with large estimated effects. The subsets
were used in an animal model where the animal effects were used to pick up the
remaining polygenic effects after the SNPs.
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Table 17.14: EBV for animals in Example data

Animal With With Animal With With
A G A G

1 -5.10 -3.01 11 -6.49 -2.14
2 4.83 2.04 12 7.44 5.14
3 7.15 5.37 13 13.08 12.17
4 -4.83 -3.04 14 -6.62 -2.70
5 0.75 0.71 15 0.60 1.64
6 0.00 0.00 16 -7.71 -6.92
7 -4.45 -5.57 17 -3.24 -0.76
8 4.72 8.23 18 3.48 5.18
9 0.38 4.16 19 5.93 6.80
10 -3.44 -4.16 20 -5.69 -4.65

For this method to work properly, we need a better segregation analysis
procedure (Kerr and Kinghorn, 1998) so that marker genotypes can be determ-
ined for all animals that have data records, and all bulls of interest should have
genotypes known. Then all animals can be included and all available genotypes.

If an animal is homozygous for a marker, say AA, then each parent would
have contributed an A allele, and each progeny would receive an A allele. If it is
known that an animal has an A allele, then its genotype can only be either AA
or Aa, with probability equal to the frequency of the A or a alleles, respectively.
If the genotype of the other parent is known, then this can give a better estimate
of the frequencies of the two alleles. Table 17.15 contains the animals with their
known genotypes for marker 1, and then next to that the probabilities of having
the other genotypes, if they were not originally genotyped. The frequency of the
A allele was p = 11/16, and q = 5/16 is the frequency of the a allele.

The probabilities in Table 17.15 can go into the analysis for animals 11
through 20. The probabilities might be refined by utilizing the phenotypic ob-
servations as in Kerr and Kinghorn (1996) in a Bayesian segregation analysis.
Another refinement might be to also use 2 or 3 flanking markers on either side
of the markers of interest and to use marker haplotypes (i.e. which alleles are in
phase) to help determine probabilities of genotypes for all ungenotyped animals.

Markers 1, 4, and 7 were chosen randomly to illustrate the model analysis.
The probabilities for each marker genotype for animals 11 through 20 are shown
in Table 17.16 (derived separately for each marker).

The model for fat yield is

yij = Ai + b1z1ij + b4z4ij + b7z7ij + aj + eij ,
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Table 17.15: Segregation Analysis for Marker 1

Animal Sire Dam Known Possible Genotypes
Genotype AA Aa aa

1 p q 0
2 p q 0
3 0 p q
4 p q 0
5 p2 2pq q2

6 p2 2pq q2

7 AA 1 0 0
8 Aa 0 1 0
9 AA 1 0 0
10 aa 0 0 1
11 9 7 AA 1 0 0
12 9 2 AA 1 0 0
13 8 3 aa 0 0 1
14 1 4 AA 1 0 0
15 1 6 p2 + pq/2 (3pq + q2)/2 q2/2
16 1 10 p q 0
17 8 4 (2p+ q)/4 0.5 q/4
18 8 5 p/2 0.5 q/2
19 8 3 p/4 0.5 (p+ 2q)/4
20 1 6 p2 + pq/2 (3pq + q2)/2 q2/2

where

yij is fat yield on cow j at age i,

Ai is an age group effect,

zkij is the genotype covariate for marker k, animal j, in age group i, and in this
case k = 1, 2, or 3,

bk are regression coefficients on the genotype covariates for marker k,

aj is the animal polygenic effect after accounting for SNP markers 1, 4, and 7,

eij is the residual effect of the ijth record.

Post-multiply the frequencies by (−1 0 1) to obtain a covariate for each
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Table 17.16: Probabilities of genotypes for markers 1, 4, and 7

Animal Marker 1 Marker 4 Marker 7
AA Aa aa BB Bb bb CC Cc cc

11 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
12 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000
13 0.000 0.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000
14 1.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000
15 0.580 0.371 0.049 0.049 0.371 0.580 0.439 0.465 0.096
16 0.688 0.312 0.000 0.156 0.844 0.000 0.391 0.500 0.109
17 0.422 0.500 0.078 0.000 0.156 0.844 0.781 0.219 0.000
18 0.344 0.500 0.166 0.000 0.312 0.688 0.562 0.438 0.000
19 0.172 0.500 0.328 0.000 0.156 0.844 0.781 0.219 0.000
20 0.580 0.371 0.049 0.049 0.371 0.580 0.439 0.465 0.096

marker for every animal with a record, then

X =



0 0 0 1 −1.000 0.000 1.000
1 0 0 0 −1.000 1.000 1.000
0 0 0 1 1.000 1.000 −1.000
1 0 0 0 −1.000 1.000 −1.000
0 1 0 0 −0.531 0.531 −0.343
0 0 0 1 −0.688 −0.156 −0.282
1 0 0 0 −0.344 0.844 −0.781
0 0 0 1 −0.178 0.688 −0.562
0 0 1 0 0.156 0.844 −0.781
0 1 0 0 −0.531 0.531 −0.343


where the first four columns are for the age effects (see Table 17.1), and the last
three columns are for markers 1, 4, and 7. Thus, the SNP genotypes or covariates
are fixed effects in the model.

Construct the MME and solve. The solutions are in the Table 17.17.
In the original animal model, without SNP genotypes, the estimate of the

residual variance was

σ2
e = (y′y − b̂′X′y − â′Z′y)/(N − r(X)) = 1114.64,

Accounting for markers 1, 4, and 7, then

σ2
e = 561.18.
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Table 17.17: Solutions using Actual and Predicted Genotypes for a subset of SNP
markers

b̂ Animal âk Animal âk
Age 1 282.18 1 2.45 11 -3.43
Age 2 325.05 2 1.66 12 2.26
Age 3 334.59 3 0.52 13 -0.21
Age 4 315.60 4 -1.66 14 0.57
SNP 1 24.63 5 -0.66 15 4.37
SNP 4 65.35 6 0.00 16 4.63
SNP 7 21.59 7 -2.13 17 -3.67

8 -1.98 18 -1.98
9 -0.47 19 -0.73
10 2.27 20 -1.92

Thus, accounting for SNP genotypes has lowered the residual variance, which
means the estimated breeding values must be more accurate.

The gEBV for animal 9, for example, where his marker covariates would
have been -1, 1, and 0, for markers 1, 4, and 7, respectively, would be calculated
as

−1(24.63) + 1(65.35) + 0(21.59) − 0.47 = 40.25,

and for animal 20 would be

−0.531(24.63) + 0.531(65.35)− 0.343(21.59) − 1.92 = 12.30.

In this small example the gEBV are very large due to the estimated regression
coefficients being very large. More data and especially more genotypes are needed.

The question becomes how many SNP markers need to be included, and
how to determine the best set of markers, out of 50K or 700K. An analysis of
including one marker at a time, as in the association studies, but with the above
model, will be needed. This could take a long time to try 50K or 700K markers.
The number of markers should likely be 50 to 200, but this is a guess.

The best set of markers could differ depending on the trait being analyzed.
In total, perhaps 5000 markers need to be saved to include in genetic evaluations
of all traits.

The problem of more SNPs to estimate than data is resolved because
all animals with records are given marker genotypes based on probabilities, and
a limited number of markers are used per trait. All data records are utilized
simultaneously.

The SNP genotype probabilities can be stored and revised as more anim-
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als are genotyped and as more animals are added to the pedigrees, rather than
starting over from nothing each genetic evaluation run. The process would be to
use genotyped animals to determine which alleles likely came from each parent.
In some cases, the exact genotype of a parent for a marker may be possible to
derive.

After all parents have been assigned probabilities for each genotype, then
all ungenotyped progeny can be processed. If both parents are homozygous, then
the genotype of the progeny may be determined exactly. Use of phenotypic records
in a Bayesian approach may be helpful, but should be tested. A study is needed
to compare the methods in this section in terms of accuracy of estimating true
breeding values. True breeding values would be simulated using genotypes of 100K
markers. Different percentages of genotyped animals should also be compared,
and whether it is more important to genotype parents or progeny.

17.6 Imputation

Other approaches to estimating genotype probabilities have been given by
Van Arendonk et. al (1989) and by Fernando et. al. (1993). There are many sizes
of SNP panels with the latest being 700K for dairy cattle. With 700K SNPs, the
genome is thoroughly and densely covered with markers and the gaps between
SNPs are small. Estimation of the effects of 700K SNPs is a problem because by
comparison there are very few genotyped animals from which to estimate all of
these effects. Instead the SNPs are used to obtain a better genetic relationship
matrix among animals. Because animals have been genotyped with different sizes
of SNP panels, the process of imputation has been studied heavily and several
methods developed. Imputation is where, for example, the genotypes from a
50K chip are used to ‘guess’ the genotypes for a 700K chip using pedigrees and
population knowledge about LD between SNPs. There needs to be enough animals
genotyped with the 700K panel, and from that their 50K genotypes are also known
(same SNPs on both chips), so that algorithms to extend from 50K to 700K can
be worked out. The strategy would be to genotype relatively few animals with the
700K chip (maybe bulls and bull dams), and all other animals would be genotyped
with the cheaper 50K chip, and then imputed by computer to 700K. The accuracy
of imputation is fairly high (95% in most cases). Thus, money for genotyping can
be used to genotype more animals at 50K rather than paying much more for 700K
genotypes. Eventually, costs of genotyping may become low for everyone to be
able to use 700K chips or larger.
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17.7 Genome Sequencing

SNPs may not have a long life in genomics. The cost of sequencing the
entire genome is decreasing. A person can have their genome sequenced for a
cost of only $1000 US. Nanotechnology has developed a tube through which DNA
passes, one base pair at a time, allowing ‘reading’ of the sequence. What can
we do with a complete 3.5 billion base pair sequencing of DNA per cow or bull?
That is a lot of information to store and to process, per animal. Sequence data
will need to be condensed into a smaller number of useful pieces of information.
Supposedly we should be able to identify the 25,000 genes and their alleles. Genes
will likely have more than two alleles each, probably dozens of alleles.

Genes are known to interact with each other. Traits are affected by hun-
dreds or thousands of genes, and some genes can affect several traits. These
pathways need to be understood before selection on individual genes should be
made. Genomics is new and valuable to genetic improvement, but there is still
much that needs to be learned about the genome.
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Appendix A

Relationship Among Methods

HORIA GROSU
SORIN LUNGU

This appendix attempts to illustrate the subtle differences between
three methods of sire evaluation, and how the methods are connected.

A.1 Contemporary Comparison

This is the method of Roberston and Rendel (1954). Consider the case of
only first lactations and the model

yijk = hi + sj + eijk,

where

yijk represents the heifer yield of daughter k of sire j in herd-year-season i,

hi is the fixed herd-year-season effect, (i.e. contemporary group),

sj is the sire effect, and

eijk is the residual effect.

Let nij represent the number of daughters of sire j in HYS i. In matrix notation,

y = Xh + Zs + e.

The least squares estimates for sires and HYS are given by(
X′X X′Z
Z′X Z′Z

)(
ĥ
ŝ

)
=

(
X′y
Z′y

)
.
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The equation for the ith HYS is

ni.ĥi +
∑
j

(nij ŝj) = yi..

and for the jth sire is ∑
i

ĥi + n.j ŝj = y.j.

When the number of HYS are large, then those equations may be absorbed
into the sire equations, to give

Z′SZŝ = Z′Sy.

The equation for the jth sire is[
n.j −

∑
i

(
n2
ij

ni.

)]
ŝj −

∑
i

∑
j′ 6=j

(
nijnij′

ni.

)
ŝj′ = y.j. −

∑
i

(nijyi..)

Let nij′ represent all of the contemporaries of daughters of sire j, then

ni. = nij + nij′

wj = n.j −
∑
i

(
n2
ij

ni.

)

wij = nij

(
1− nij

ni.

)
=

nijni. − n2
ij

ni.

wij =
nijnij′

nij + nij′

Using the above results, then Thompson (1976) showed that the equation
for the jth sire could be written as

wj ŝj =
∑
i

[
wij
(
yij − yij′

)]
+Aj′ ,

where

yij is the average yield of daughters of sire j in HYS i,

yij′ is the average yield of daughters of all other sires, except j, in HYS i, and
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Aj′ is a measure of the genetic merit of the contemporaries of daughters of sire
j, where

Aj′ =
∑
i

∑
j′ 6=j

(
nijnij′

ni.

)
ŝj′

Solving the above equation would be difficult if there are many bulls and
HYS, so Robertson and Rendel (1954) suggested ignoring the last term, Aj′ ,
assuming that the average genetic merit of contemporaries was equal among sires.
Then Cj is used to approximate ŝj , so that

wjCj =
∑
i

[
wij
(
yij − yij′

)]
Consequently, Cj is an average of weighted deviations of daughter averages from
their contemporary averages, and called the Contemporary Comparison. The
solution for Cj is then regressed using

ĝj =

(
wj

wj + k

)
Cj

A.1.1 Numerical Example

Consider the data from Chapter 7, duplicated below.

Table A.1: Example Data for Least Squares Method. CG = Contemporary Group

Sire Herd 1 Herd 2 Sire totals
1 2(9,100) 2(8,000) 4(17,100)
2 5(20,200) 3(13,100) 8(33,300)
3 1(4,500) 5(19,600) 6(24,100)

CG
Totals 8(33,800) 10(40,700)

After setting up the LS equations and aborbing the HYS equations, the
resulting sire equations are 3.100 −1.850 −1.250

−1.850 3.975 −2.125
−1.250 −2.125 3.375

 ŝ1

ŝ2

ŝ3

 =

 +510
−35
−475


The off-diagonals of the coefficient matrix are ignored, as suggested by
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Robertson and Rendel (1954), then C1

C2

C3

 =

 3.100 0 0
0 3.975 0
0 0 3.375

−1 +510
−35
−475

 =

 +164.5161
−8.8050
−140.7407

 .

If k = 15 is assumed, then

CC1 =

(
3.100

3.100 + 15

)
× 164.5161 = 28.18

CC2 =

(
3.975

3.975 + 15

)
×−8.8050 = −1.85

CC3 =

(
3.375

3.375 + 15

)
×−140.7407 = −25.85

Bar Anan and Sacks (1974) give an example of the biases encountered
as a bull ages, because the contemporaries of the later daughters will likely be
daughters of progressively younger bulls with potentially greater genetic merit.

A.2 Cumulative Difference Method

Bar Anan and Sacks (1974) described a method to correct for the deficien-
cies of the contemporary comparison. The Cumulative Difference Method gave
sire estimated breeding values that consisted of two parts.

1. An estimate of the comparison of daughters to contemporaries, and

2. An adjustment for the genetic level of the contemporaries.

The method was to calculate

CDj = CCj +Aj′

where Aj′ is the average genetic deviation of the sires of the contemporaries. Let

W = diag(Z′SZ) =

 3.100 0 0
0 3.975 0
0 0 3.375


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W − Z′SZ =

 0 1.850 1.250
1.850 0 2.125
1.250 2.125 0


= Q

then  A1′

A2′

A3′

 = W−1Q

 CC1

CC2

CC3


or  A1′

A2′

A3′

 =

 −11.5200
−0.7056
+9.2745


which shows that sire 1 had contemporaries whose sires were of greater genetic
merit than those of sires 2 or 3, thus, a downward adjustment on CC1

Finally, CD1

CD2

CD3

 =

 28.1800
−1.8455
−25.8503

 +

 −11.5200
−0.7056
+9.2745

 =

 +16.6525
−2.5502
−16.5759

 .

Thus, the Cumulative Difference Method is the Contemporary Comparison
Method plus an adjustment for the genetic level of the contemporaries’ sires. The
off-diagonals in Z′SZ are not ignored in the Cumulative Difference Method.

A.3 Modified Cumulative Difference Method

Dempfle (1976) found that sires with lower numbers of daughters were
disadvantaged in the Cumulative Difference Method, and therefore, suggested the
following order of calculations. First,

CAj = Cj +Aj′

where  A1′

A2′

A3′

 = W−1Q

 C1

C2

C3


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or  A1′

A2′

A3′

 =

 −62.0049
+1.3285

+55.3280


Then CA1

CA2

CA3

 =

 +164.5161
−8.8050
−140.7407

 +

 −62.0049
+1.3285

+55.3280

 =

 +102.5112
−7.4765
−85.3527

 .

Now the result is regressed to obtain the sire evaluations, (assuming k = 15
again),  CD1

CD2

CD3

 =

 3.100
3.100+15(102.5112)

3.975
3.975+15(−7.4765)
3.375

3.375+15(−85.3527)

 =

 +17.5572
−1.5662
−15.6770

 .

The procedure is iterated using CDj instead of Cj to derive new Aj′ , then
new CAj followed by new CDj . After several iterations, CD1

CD2

CD3

 =

 +26.2945
−2.0015
−24.2931

 .

The Mixed Model Equations (MME) for this model, after absorbing HYS,
would be

(Z′SZ + Ik)ŝ = Z′Sy

and the solutions are  ŝ1

ŝ2

ŝ3

 =

 +26.2945
−2.0015
−24.2931

 .

Thus, the modified cumulative difference method and MME would be
identical for a model where sires are assumed to be unrelated.

A.4 Thompson Approach

From the previous section, at the first iteration step,

CDj = bj × CAj
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where bj =
wj

wj+k
. Thompson (1976) showed that this could be re-arranged as

CDj = bj(Cj +Aj′)

= bj × Cj + bj ×Aj′

= CCj + bj ×Aj′

Then Aj′ are updated using the new CDj , as above, but CCj is kept constant
through the iterations. The results converge to the same as the modified cumu-
lative difference method and to the MME sire model solutions from the previous
section.

Let

Z′SZ = W + (Z′SZ−W)

= W −Q

where W are the diagonals of Z′SZ, and Q are the off-diagonals. Then the MME
for a sire model can be written as

(W −Q + Ik)ŝ = Z′Sy

(W + Ik)ŝ = Z′Sy + Qŝ

where the coefficient matrix on the left is diagonal, thus for the jth sire

(wj + k)ŝj =
∑
i

(
wij(yij − yij′)

)
+Aj′

where
Aj′ = (Qŝ)j

which is the jth element of Qŝ. Also,

ŝ = (W + Ik)−1Z′Sy + (W + Ik)−1Qŝ or
ŝj = CCj + bjAj′ .
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A.5 Summary

The following comments can be made.

1. The Contemporary Comparison of Robertson and Rendel (1954) calculate
Cj which are weighted deviations of bull’s daughter records from contem-
porary records.

Cj =

∑
i

(
wij(yij − yij′)

)∑
iwij

The final evaluation is
CCj =

wj
wj + k

Cj .

The off-diagonals of Z′SZ are ignored, which means that the genetic level
of the contemporaries are ignored.

2. The Cumulative Difference Method of Bar Anan and Sacks (1974) takes
CCj and adds an adjustment for the genetic level of the contemporaries,
which uses the off-diagonals of Z′SZ.

3. The Modified Cumulative Difference Method of Dempfle(1976) or of Thompson
(1976) also account for the genetic level of the contemporaries, but in a dif-
ferent order of calculations, and iteratively. Thus,

CDj = bj(Cj +Aj′), or

or

CDj = CCj + bjAj′ .

Iterating to update Aj′ leads to CDj which are identical to sire solutions
from corresponding MME.

4. If genetic relationships among sires are to be considered, then the Modified
Cumulative Difference method would not be identical to the MME solution.
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Appendix B

Romanian Animal Model, 1982

CORNELIU DRĂGĂNESCU

B.1 Animal Model, 1982

An animal model-like procedure for Romania was described in 1982, but
which does not utilize the additive genetic relationship matrix. The calculations
involve coefficients that look like Henderson’s rules for computing the inverse of
A. Multiple lactation records per cow, assumed to be adjusted for parity, age,
and season of calving are modelled as

yijk = hi + aj + pj + eijk,

where

yijk is lactation k on cow j in herd-year-season i,

hi is a fixed herd-year-season effect,

aj is a random animal additive genetic effect,

pj is a random animal permanent environmental effect, and

eijk is a random residual effect.
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Also,

E(aj) = 0

E(pj) = 0

E(eijk) = 0

and the variances are
σ2
y = σ2

a + σ2
p + σ2

e ,

for phenotype, additive, PE, and residual variances, respectively. Let

kp =
σ2
e

σ2
p

=
1− r
r − h2

,

and

ka =
σ2
e

σ2
a

=
1− r
h2

.

Instead of additive genetic relationships, each animal is assigned to one of
four groups on the basis of available parentage information, and coefficients are
assigned for weighting the information, as shown in the following table (Table
B.1). In actual fact, these constants correspond to A−1 times 6. The iteration
strategy uses the constants exactly as in using Henderson’s rules to create A−1.

Table B.1: Grouping Information

Sire Dam K M T
Known Known
No No 6 0 0
Yes No 8 4 0
No Yes 8 0 4
Yes Yes 12 6 6

An iteration on data strategy has been used. Start with all solutions being
zero, then the steps are as follows:

1. Solve for herd-year-season solutions,

ĥi =

∑
j

∑
k(yijk − âj − p̂j)

ni.
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2. Solve for animal PE effects,

p̂j =

∑
i

∑
k(yijk − ĥi − âj)
n.j + kp

3. Solve for animal additive genetic effects, in parts,

• Data part, D and its weight, L,

D =
∑
i

∑
k

(yijk − ĥi),

and

L =
6 h2

n.j(r − h2) + (1− r)
.

• Parent part, PA, and

PA = Mâs + T âd

where s and d indicate sire and dam of animal j.

• Progeny part, O, and its weight W ,

O = 4
∑
m

(âm) + 6
∑
`

(â` − âd`/2),

where m denote progeny of animal j when the mate is unknown, and
` and d` indicates mate of animal j that co-produced progeny ` for
progeny when both parents are known, and

W =
∑
m

(2) +
∑
`

(3)

for progeny without mate known, and with mate known.

Combining the pieces gives

âj =
(L×D) + PA+O

n.jL+K +W
.

When j refers to a bull or dam without records, then L = 0.

The coefficients in B.1 take the place of Henderson’s rules for inverting the additive
genetic relationship matrix. The method ignores inbreeding. During the iteration
process it is necessary to combine animal solutions from 3 separate rounds of
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iteration. Let a(i) be the solution for an animal from round i, then at the end of
each iteration calculate

anext = (−a(i−1) + 2a(i) + 5a(i+1))/6

This method, described in 1982, was not implemented in Romania until
1996-7.

B.1.1 Example

Below are repeated records on cows in 3 herd-year-seasons (Table B.2).
Assume that h2 = 0.267 and r = 0.398, then ka = 2.25 and kp = 4.59.

Table B.2: Example Protein Yield Data To Illustrate Methods

Cow Sire Dam HYS 1 HYS 2 HYS 3
12 1 5 284 285 299
13 1 6 301 371 320
14 1 7 329 324 371
15 2 8 285 309
16 2 9 258 302
17 2 10 306
18 2 11 300
19 3 5 327 352
20 3 8 323 340
21 4 7 334
22 4 10 338

Table B.3 contains the solutions to the above example and also, the solu-
tions to the usual animal model MME using A.

The solutions from the two models are similar and highly correlated except
for the animals that did not have records. Their solutions tended to differ more
than other solutions.

B.2 Animal model - 1982

Biometric model:
y ijk =mi +aj +pj +eijk ,
yijk = is a performance in lactation k on cow j in herd-year-season i;
mi = is fixed hys effect i, i =1 .. F ;
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Table B.3: Results of Drăgănescu (1982) and usual animal model analysis

Drăgănescu Usual MME Drăgănescu Usual MME
h1 296.68 296.98 a14 9.83 9.40
h2 321.18 321.43 a15 -5.01 -5.43
h3 333.23 333.53 a16 -11.09 -11.06
a1 4.71 1.48 a17 -0.20 0.07
a2 -7.38 -5.27 a18 -1.63 -1.42
a3 0.65 3.64 a19 2.33 2.46
a4 3.89 0.15 a20 0.79 1.80
a5 -1.78 -4.63 a21 3.16 2.47
a6 5.14 3.17 a22 1.77 1.66
a7 7.75 5.53 p12 -7.88 -7.44
a8 -3.00 -1.41 p13 2.90 3.11
a9 -8.91 -5.62 p14 5.72 5.78
a10 0.20 2.15 p15 -2.10 -2.05
a11 -2.60 0.81 p16 -5.42 -5.51
a12 -7.77 -9.16 p17 1.70 1.60
a13 6.30 5.49 p18 0.89 0.79

p19 3.02 2.90
p20 1.06 0.67
p21 -0.43 -0.36
p22 0.54 0.50

aj = is a random additive genetic value of the cow j;
pj = is a random nonadditive (dominance, epistatic and permanent

environmental effect) on cow j;
eijk = is random residual effect. All variables are uncorrelated, E(aj)=E(pj)=E(eijk)=0,

var(aj)=VA , var(pj)=Vp , var(eij)=Ve
h2 = VA/Vy , Vy = var (y) = VA + Vp + Ve
r = (VA+Vp /Vy ,
U = the set of animals (cows and bulls) to be evaluated;
X = the set of animals (cows and bulls) with dam unknown and sire

unknown;
Y = the set of animals (cows and bulls) with dam known and sire

unknown;
Z = the set of animals (cows and bulls) with dam unknown and sire

known;
W = the set of animals (cows and bulls) with dam known and sire

known;
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D'(u) = the set of offspring (cows and bulls) of a cow (u=v) or of a bull
(u=t), with the unknown partner;

D"(u) = the set of offspring (cows and bulls)
of a cow (u=v) or of a bull (u=t), with the known partner;
Nu' = number of offspring in the set Du' ;
Nu" = number of offspring in the set Du";
M(d) = dam of d;
T(d) = sire of d.

Multiplying with Vy , the WLS function to minimize is as follows:
f(m, a, p) = Σijk( yijk -mi-aj - pj)2 / (1 - r) + Σjpj

2/( r - h2 ) +
Σu∈X(au

2 ) / (h2 ) + Σu∈Y (au -aM(u) /2)2 / (3h2/4 ) +
Σu∈Z(au - aT(u) /2)2 / (3h2/4 ) + Σu∈W(au -aM(u) /2 -aT(u) /2)2 /
(h2/2 )

Further, the notations for predicted or estimated values will be the same
with those of true ones.

Effect of hys i (mi)
The derivative of f(m, a, p) with respect to mi is set to zero:
(-2)Σjk(yijk - mi - aj - pj )/(1 - r) = 0
Σjk(yijk - mi - aj - pj )= 0
Σjk mi = Σjk (yijk - aj - pj )
mi = Σjk(yijk - aj - pj )/ Σj nij = [yi.. - Σj nij(aj + pj )] / ni. (1)

The animal PE effect on cow j(pj)
The derivative of f(m, a, p) with respect to pj is set to zero:
(-2)Σik(yijk - mi - aj - pj )/(1 - r)+ [2/(r - h2)]pj = 0
(-1)Σik(yijk - mi - aj - pj ) / (1 - r) + [1/( r - h2 )]pj = 0
[n.j + (1 - r)/( r - h2 )]pj = (y.j. - Σi nijmi) - n.j aj
pj = [y.j. - Σi nijmi - n.j aj] / [n.j + (1 - r)/( r - h2 )] (2)

The proof and result is based on cows with known lactations.

Additive genetic effect of the cow j=v
Cows without lactations
Let us denote:
α=1 if the cow v has the dam and the sire unknown, and
α=0 in others situations;

β=1 if the cow v has the dam known and the sire unknown, and
β=0 in others situations;
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γ=1 if the cow v has the dam unknown and the sire known, and
γ=0 in others situations;

δ=1 if the cow v has the dam known and the sire known, and
δ=0 in others situations.

The derivative of f(m, a, p) with respect to av is set to zero:
α(2/h2)av + β8/(3h2)( av - aM(v) /2) + γ8/(3h2)( av - aT(v) /2) +

+ δ4/ h2( av - aM(v) /2 - aT(v) /2) +
(2)(-1/2)/( 3h2/4 )Σd∈D'(v)( ad - av/2) +
(2)(-1/2)/( h2/2)Σd∈D"(v)( ad - av /2 - aT(d) /2) = 0

[ 2α + 8β/3 + 8γ/3 + 4δ ]av + [ (2/3)Σd∈D'(v)av + Σd∈D"(d) av ]=
= β(4/3)aM(v) + γ( 4/3)aT(v) + δ(4)( aM(v) /2 + aT(v) /2) +
+ (4/3) Σd∈D'(v) ad + 2[Σd∈D"(u) (ad - aT(d) /2)]

(6α + 8β + 8γ + 12δ + 2Nv'+ 3Nv")av =
(4β + 6δ)aM(v) + (4γ + 6δ)aT(v) + 4Σd∈D'(v) ad +
6Σd∈D"(v) (ad - aT(d) /2) (3a)

id est
α=1 => (6 + 2Nv'+ 3Nv")av = 4Σd∈D'(v) ad + 6Σd∈D"(v) (ad - aT(d) /2)
β=1 => (8 + 2Nv'+ 3Nv")av = 4aM(v) + 4Σd∈D'(v) ad + 6Σd∈D"(v) (ad -
aT(d) /2)
γ=1 => (8 + 2Nv'+ 3Nv")av = 4aT(v) + 4Σd∈D'(v) ad + 6Σd∈D"(v) (ad -
aT(d) /2)
δ=0 => (12 + 2Nv'+ 3Nv")av = 6aM(v) + 6aT(v) + 4Σd∈D'(v) ad + 6Σd∈D"(v) (ad -
aT(d) /2)

Cows with lactations
The derivative of f(m, a, p) with respect to av is set to zero:
[-2/(1 - r]Σik ( yivk - mi - av - pv ) +
α(2/h2)av + β(8)/(3h2)( av - aM(v) /2) + γ(8)/(3h2)( av - aT(v) /2) +
δ(4/ h2)( av - aM(v) /2 - aT(v) /2)
+ (2)(-1/2)/( 3h2/4 )Σd∈D'(v)( ad - av/2) +
(2)(-1/2)/( h2/2)Σd∈D"(v)( ad - av /2 - aT(d) /2) =0
[-h2/(1 - r]Σik ( yivk - mi - av - pv ) +
α av + β(4/3)( av - aM(v) /2) + γ(4/3)( av - aT(v) /2) +
δ2( av - aM(v) /2 - aT(v) /2) + (2)(-1/2)/( 3/2 )Σd∈D'(v)( ad - av/2) +
(2)(-1/2)Σd∈D"(v)( ad - av /2 - aT(d) /2) =0

[h2/(1 - r)]Σik ( av + pv ) +[ α + 4β/3 + 4γ/3 + 2δ)] av +
+ (1/3)Nv'av + (1/2)Nv''av = [h2/(1 - r)]Σik ( yivk - mi ) +
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+ (2β /3 + δ)aM(v) + (2γ/3 + δ)aT(v) + (2/3)Σd∈D'(v)( ad) +
Σd∈D"(v)( ad - aT(d) /2)
[h2/(1 - r)][n.v av + n.v pv] + [α + 4β/3 + 4γ/3 + 2δ) + (1/3)Nv' +

(1/2)Nv'']av= [h2/(1 - r)][y.v. - Σi nivmi ] + (2β /3 + δ)aM(v) + (2γ/3 +
δ)aT(v) + (2/3)Σd∈D'(v)( ad) + Σd∈D"(v)( ad - aT(d) /2)

Because pv = [y.v. - Σi nivmi - n.v av] / [n.v + (1 - r)/( r - h2 )] ,
it results
[h2/(1 – r)]{ n.v av + n.v [y.v. - Σi nivmi - n.v av] /
[n.v + (1 - r)/( r - h2 )] } + [ α + 4β/3 + 4γ/3 + 2δ) +
(1/3)Nv' + (1/2)Nv'']av =
[h2/(1 - r)][y.v. - Σi nivmi ] +
+ (2β /3 + δ)aM(v) + (2γ/3 + δ)aT(v) + (2/3)Σd∈D'(v)( ad) +

Σd∈D"(v)( ad - aT(d) /2)
[h2/(1 – r)]{ n.v av + n.v [- n.v av] / [n.v + (1 - r)/( r - h2 )] } +
+ [α + 4β/3 + 4γ/3 + 2δ) + (1/3)Nv' + (1/2)Nv'']av =
= [h2/(1 - r)][y.v. - Σi nivmi ]- n.v [y.v. - Σi nivmi ] /
[n.v + (1 - r)/( r - h2 )] + (2β /3 + δ)aM(v) + (2γ/3 + δ)aT(v) +

(2/3)Σd∈D'(v)( ad) + Σd∈D"(v)( ad - aT(d) /2)

[h2/(1 – r)]{ (1 - r) / [n.v ( r - h2 )]+ (1 - r) ]}n.v av +
+ [α + 4β/3 + 4γ/3 + 2δ) + (1/3)Nv' + (1/2)Nv'']av =
= [h2/(1 – r)]{ (1 - r) / [n.v( r - h2 ) + (1 - r)]}[y.v. - Σi nivmi ] +
+ (2β /3 + δ)aM(v) + (2γ/3 + δ)aT(v) + (2/3)Σd∈D'(v)( ad) + Σd∈D"(v)( ad -

aT(d) /2)

{ h2/ [n.v ( r - h2 )]+ (1 - r) ]}n.v av +
+ [α + 4β/3 + 4γ/3 + 2δ) + (1/3)Nv' + (1/2)Nv'']av =
= {h2 / [n.v( r - h2 ) + (1 - r)]}[y.v. - Σi nivmi ] +
+ (2β /3 + δ)aM(v) + (2γ/3 + δ)aT(v) + (2/3)Σd∈D'(v)( ad) + Σd∈D"(v)( ad -

aT(d) /2)
Let us denote Lv = 6 h2 / [ n.v ( r - h2 ) + 1 - r ] , if the cow has

known lactations, and Lv = 0 , if the cow has no known lactation. We multiply
the equation by 6:

[n.v Lv + 6α + 8β + 8γ + 12δ + 2Nv' + 3Nv''] av =
= Lv [y.v. - Σi nivmi ] + [4β + 6δ]aM(v) +
+ (4β + 6δ)aM(v) + (4γ + 6δ)aT(v) + 4Σd∈D'(v)( ad) + 6Σd∈D"(v)( ad -

aT(d) /2)
(3b)

id est:
α=1 =>
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(n.v Lv + 6 + 2Nv' + 3Nv'')av = Lv [y.v. - Σi nivmi ] + 4Σd∈D'(v)(ad) +
6Σd∈D"(v)( ad - aT(d) /2)
β=1 =>

(n.v Lv + 8 + 2Nv'+ 3Nv")av = Lv [y.v. - Σi nivmi ] +
+ 4aM(v) + 4Σd∈D'(v) ad + 6Σd∈D"(v) (ad - aT(d) /2)

γ=1 =>
(n.v Lv + 8 + 2Nv'+ 3Nv")av = Lv [y.v. - Σi nivmi ] +

+ 4aT(v) + 4Σd∈D'(v) ad + 6Σd∈D"(v) (ad - aT(d) /2)
δ=1 =>

(n.v Lv + 12 + 2Nv'+ 3Nv")av = Lv [y.v. - Σi nivmi ] +
+ 6aM(v) + 6aT(v) + 4Σd∈D'(v) ad + 6Σd∈D"(v) (ad - aT(d) /2)

Additive genetic effect of the bull j=t
By analogy with the formula proved for cows without known lactation, for

bulls there is the following formula:
(6α + 8β + 8γ + 12δ + 2Nt'+ 3Nt")at = (4β + 6δ)aM(t) + (4γ + 6δ)aT(t) +
4Σd∈D'(t) ad + 6Σd∈D"(t) (ad - aM(d) /2)
id est:
α=1 =>

( 6 + 2Nt'+ 3Nt'')at = 4Σd∈D'(t) ad + 6Σd∈D"(t) (ad - aM(d) /2)
β=1 =>

( 8 + 2Nt'+ 3Nt'')at = 4aM(t) + 4Σd∈D'(t) ad + 6Σd∈D"(t) (ad - aM(d) /2)
γ=1 =>

( 8 + 2Nt'+ 3Nt'')at = 4aT(t) + 4Σd∈D'(t) ad + 6Σd∈D"(t) (ad - aM(d) /2)
δ=1 =>

(12 + 2Nt'+ 3Nt'')at = 6aM(t) + 6aT(t) + 4Σd∈D'(t) ad + 6Σd∈D"(t) (ad -
aM(d) /2)
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normalizing, 245
Northeast AI Sire Comparison, 103
number of times milked, 93
number of times milked per day, 79

off-diagonals, 99
One-Step Method, 294
ordinary least squares equations, 81
orthogonal polynomials, 187
overall phenotypic variance, 149
overall population, 97

parent average EBV, 132
parent indexes, 56
parity-year-month, 141
pedigree index, 63
pedigree information, 62, 68
pedigree list, 101
pedigrees, 17
permanent environmental, 120
permanent environmental effect, 141
permanent environmental effects, 142,

167
phantom group effects, 125, 141
phantom groups, 158
phantom parent grouping, 131
phantom parent groups, 127
phenotypic and genetic variances and

covariances, 24
phenotypic lactation curves, 181
phenotypic trend, 224, 236
phenotypic variance, 142
phenotypic variances, 147
Poisson distribution, 256
population of levels, 97
population survival function, 264
predicted transmitting, 51
preferentially treated daughters, 159
private cooperatives, 126
productive life, 56
profitability of the cow, 259

progeny testing, 97, 104, 225
progeny testing programs, 159

quota system of production, 259

random additive genetic value, 141
random factor, 97
random factors, 80, 93
random herd-year-season, 124
random permanent environmental, 141
random regression model, 262
random regressions, 180
random residual effect, 142
random sample, 97
random variables, 96
reduced animal model, 135, 138
regressed least squares, 79
regression approach, 155
regression factor, 40
regression of future daughters, 47
regression within sires, 227
Regressions of Performance on Time,

220
Relationships Among Animals, 292
relative economic values, 30
reliability, 163
Repeatability, 50
repeatability, 14, 15, 69
repeatability animal model, 141, 233
repeated daughter records, 10
repeated Records Animal Model, 167
replacement animal, 259
residual covariance matrix, 172
residual effect, 125
residual effects, 81, 129
residual environmental correlation, 49,

64
residual variance, 96
restricted selection index, 31
risk factors, 271

Scale Transformation, 171
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season of calving, 79
selection by progeny, 1
selection index, 14, 94
selection index equation, 24
selection index method, 23, 93
selection index weights, 24
Several Daughters, 10
short term environmental (STE), 194
simple regression, 154
single nucleotide polymorphisms, 3
single trait, 173
single trait animal model, 167
sire de-regressed proof, 156
Sire Model, 92
sire model, 95, 97, 124
Sire Models, 180
sire proofs, 37, 39
sire transmitting ability, 103
Sire-Dam Relationships, 100
smooth curve, 262
SNP genotype probabilities, 299
SNP genotypes, 287, 298
Spline Function RRM, 207
spline functions, 208
squared correlation, 134
standardization of fat yield for age, 37
standardized time values, 188
stayability, 259, 261
survival analyses, 260
survival function, 261, 271
Survival Kit, 270
survivor function, 261

TD, 179
Test Day Model, 180
test-day model, 95
test-day models, 3
Threshold Model, 248
threshold model, 242, 256
threshold models, 174
threshold points, 241

time dependent variables, 261
time independent variables, 261
total phenotypic trends, 227
total trend, 225
transformed residual matrix, 168
transformed variables, 168
transmitting abilities, 81
transmitting ability, 13, 38, 45, 69
true genetic merit, 15
Two-Step procedure, 292
type classification traits, 154

uncensored record, 260
unselected control population, 215

variance components, 98
variances, 93
variances of prediction error, 95, 177

Weibull function, 263
Weibull model, 270
weighted deviations, 312
weighted least squares, 79
weighting factor, 38
Wilmink’s Function, 183
within sire regression of progeny per-

formance, 221
within sire-herd subclasses, 224
within-sire regression, 220
Wood’s Function, 182

year-month of calving, 98, 124




