Random Regressions

LRS

CGIL

July-Aug 2012

Where Needed

- Test day milk yields of cows, goats, sheep
- Daily feed intake of pigs, cattle, goats
- Daily weight or height changes
- Blood components per minute or hour after treatment (diet, injections)
- Any trait measured over time (longitudinal)
- Measurements that follow a trajectory

Pigs were measured on days 10, 20, 30, 40, 50, and 60 while on growth test. The covariance matrix of weights was

	/ 2.5	4.9	4.6	4.6	4.3	4.0 \
	4.9	13.5	12.1	12.3	11.9	10.7
V	4.6	12.1	15.2	14.5	14.6	12.5
v =	4.6	12.3	14.5	20.0	19.0	$ \begin{array}{c} 4.0\\ 10.7\\ 12.5\\ 16.9\\ 20.3\\ 30.0 \end{array} $
	4.3	11.9	14.6	19.0	25.0	20.3
	4.0	10.7	12.5	16.9	20.3	30.0

Kirkpatrick et al. (1991) wanted to estimate variances and covariances for other days during the interval 10 to 60 d.

$\bm{V}=\bm{\Phi}\bm{H}\bm{\Phi}'$

where Φ was based on Legendre polynomials and time.

Legendre polynomials, 1797

$$P_0(x) = 1$$
, and
 $P_1(x) = x$,

then, in general, the n + 1 polynomial is described by the following recursive equation:

$$P_{n+1}(x) = \frac{1}{n+1} \left((2n+1)x P_n(x) - n P_{n-1}(x) \right)$$

These quantities are "normalized" using

$$\phi_n(x) = \left(\frac{2n+1}{2}\right)^{.5} P_n(x).$$

This gives the following series,

$$\phi_0(x) = \left(\frac{1}{2}\right)^{.5} P_0(x) = .7071$$

$$\phi_1(x) = \left(\frac{3}{2}\right)^{.5} P_1(x)$$

$$= 1.2247x$$

$$P_2(x) = \frac{1}{2}(3xP_1(x) - 1P_0(x))$$

$$\phi_2(x) = \left(\frac{5}{2}\right)^{.5}(\frac{3}{2}x^2 - \frac{1}{2})$$

$$= -.7906 + 2.3717x^2$$

Legendre polynomials

$$\Lambda' = \begin{pmatrix} .7071 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1.2247 & 0 & 0 & 0 & 0 \\ -.7906 & 0 & 2.3717 & 0 & 0 & 0 \\ 0 & -2.8062 & 0 & 4.6771 & 0 & 0 \\ .7955 & 0 & -7.9550 & 0 & 9.2808 & 0 \\ 0 & 4.3973 & 0 & -20.5206 & 0 & 18.4685 \end{pmatrix}$$

$$egin{aligned} q_\ell &= -1 + 2\left(rac{t_\ell - t_{min}}{t_{max} - t_{min}}
ight) \ t_{min} &= 10, \quad t_{max} = 60 \end{aligned}$$

Days on	Age	Standardized
Test		Value
10	31	-1.000
20	41	600
30	51	200
40	61	.200
50	71	.600
60	81	1.000

M =	(1)	-1	1	-1	1	-1
	1	600	.360	216	.130	078
	1	200	.040	008	.002	000
	1	.200	.040	.008	.002	.000
	1	.600	.360	.216	.130	.078
	$\setminus 1$	1	1	1	1	$\begin{array}{c} -1 \\078 \\000 \\ .000 \\ .078 \\ 1 \end{array}$

$\Phi \ = \ \boldsymbol{\mathsf{M}} \boldsymbol{\Lambda},$

=

/ .7071	-1.2247	1.5811	-1.8708	2.1213	-2.3452 \
.7071	7348	.0632	.6735	8655	.3580
.7071	2449	6957	.5238	.4921	7212
.7071	.2449	6957	5238	.4921	.7212
.7071	.7348	.0632	6735	8655	3580
.7071	1.2247	1.5811	1.8708	2.1213	2.3452 /

$\mathsf{Getting}\ \mathbf{H}$

V	=	$\Phi \bm{H} \Phi'$				
н	=	$\Phi^{-1} \mathbf{V} \Phi^{-T},$				
		/ 27.69	5.29 -1.	95 0.05	-1.17	0.52 \
		27.69 5.29	4.99 0.	42 -0.25	-0.30	-0.75
	_	-1.95 0.05 -	0.42 1.	51 0.20	-0.33	-0.07
	=	0.05 —	0.25 0.	20 1.19	0.06	-0.71
		-1.17 -	0.30 -0.	33 0.06	0.58	0.15
		$\begin{pmatrix} -1.17 & - \\ 0.52 & - \end{pmatrix}$	0.75 –0.	07 -0.71	0.15	1.12 /

Days 25 and 55 on Test

Standardized time is -0.4 and 0.8, respectively.

$$\mathbf{L} = \begin{pmatrix} .7071 & -.4899 & -.4111 & .8232 & -.2397 & -.6347 \\ .7071 & .9798 & .7273 & .1497 & -.4943 & -.9370 \end{pmatrix}$$
$$\mathbf{LHL'} = \begin{pmatrix} 14.4226 & 13.7370 \\ 13.7370 & 28.9395 \end{pmatrix}$$

Pig Weights

Pigs were measured on days 10, 20, 30, 40, 50, and 60 while on growth test. The covariance matrix of weights was

	/ 2.5	4.9 13.5		4.6	4.6	4.3		4.0 \
	4.9	13.5		12.1	12.3	11.9		10.7
			14.42				13.74	
V _	4.6	12.1		15.2	14.5	14.6		12.5
v =	4.6	12.1 12.3		14.5	20.0	19.0		16.9
	4.3	11.9		14.6	19.0	25.0		20.3
			13.74				28.94	
	\ 4.0	10.7		12.5	16.9	20.3		30.0 /

Lower Orders

- Order 6 fit V perfectly.
- Is there a lower order fit that works almost as well?
- Order 3 would use only the first 3 columns of $\Phi.~\textbf{H}^{\star}$ has dimension $3\times 3.$

$$\Phi^* = \begin{pmatrix} .7071 & -1.2247 & 1.5811 \\ .7071 & -.7348 & .0632 \\ .7071 & -.2449 & -.6957 \\ .7071 & .2449 & -.6957 \\ .7071 & .7348 & .0632 \\ .7071 & 1.2247 & 1.5811 \end{pmatrix},$$

$$\Phi^{*'} \mathbf{V} \Phi^{*} = \Phi^{*'} (\Phi^{*} \mathbf{H}^{*} \Phi^{*'}) \Phi^{*}$$

= $(\Phi^{*'} \Phi^{*}) \mathbf{H}^{*} (\Phi^{*'} \Phi^{*})$
$$\mathbf{H}^{*} = (\Phi^{*'} \Phi^{*})^{-1} \Phi^{*'} \mathbf{V} \Phi^{*} (\Phi^{*'} \Phi^{*})^{-1}$$

$$\Phi^{*'} \Phi^{*})^{-1} = \begin{pmatrix} .3705 & .0000 & -.0832 \\ .0000 & .2381 & .0000 \\ -.0832 & .0000 & .1860 \end{pmatrix}$$
$$\Phi^{*'} \mathbf{V} \Phi^{*} = \begin{pmatrix} 220.2958 & 78.0080 & 61.4449 \\ 78.0080 & 67.5670 & 44.9707 \\ 61.4449 & 44.9707 & 50.5819 \end{pmatrix}$$
$$\mathbf{H}^{*} = \begin{pmatrix} 26.8082 & 5.9919 & -2.9122 \\ 5.9919 & 3.8309 & .4468 \\ -2.9122 & .4468 & 1.3730 \end{pmatrix}$$

(

Testing

$$\mathbf{V}^* = \Phi^* \mathbf{H}^* \Phi^{*'}$$

Let

$$\mathsf{E} ~=~ \mathsf{V}^* - \mathsf{V}$$

Square the diagonals and elements above the diagonal and sum together, the value is 59.3476, it has 6 df. Do the same for order 5, giving 7.2139

with 15 df.

$$\sigma^2 = 7.2139/6 = 1.2023.$$

$$F = \frac{(\hat{\mathbf{e}}'\hat{\mathbf{e}}_{m=3} - \hat{\mathbf{e}}'\hat{\mathbf{e}}_{m=5})/(15-6)}{\sigma^2}$$

= $\frac{(59.3476 - 7.2139)/9}{1.2023}$
= $5.7926/1.2023 = 4.8180$

Random Regressions

- Presented by Henderson in his book, 1984.
- Earlier paper with his son.
- LRS presented application to dairy cows, 1994.
- Implemented in Canada, 1999.

Model Considerations

- Need to model curve shape of observations over time, using LP, other covariates, or intervals of time.
- Many fixed curves may be needed, by breed, year, age at calving, parity, etc.
- All factors in model have curves, the effects change with the age of the animal, or the number of days in milk.
- Residual variance likely changes over time too.
- PE effects needed, following LP.

Pig Test Station Model

Table 1								
Traits and Factors.								
Trait	Trial-	al- Machine Technician Trial- Animal Anim						
	Breed-	type		Pen	Permanent	Genetic		
	Sex				Environ.			
Visits	Х			Х	Х	Х		
Duration	Х			Х	Х	X		
Feed Intake	Х			Х	Х	X		
Weight	Х			Х	Х	X		
Backfat	Х	Х	Х	Х	Х	X		
Lean	Х	Х	Х	Х	Х	Х		

Example

- Assume two pigs, one at 25 days and one at 55 days.
- Both belong to same trial
- Assume LP of order 2,

$$\mathbf{X} = \left(\begin{array}{ccc} .7071 & -.4899 & -.4111 \\ .7071 & .9798 & .7273 \end{array}\right) \quad \mathbf{y} = \left(\begin{array}{c} 1.09 \\ 2.97 \end{array}\right)$$

for trial effects.

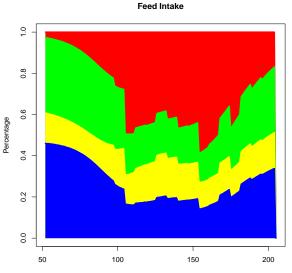
• For animal additive genetic and PE matrices

$$\mathbf{Z} = \left(\begin{array}{ccc} .7071 & -.4899 & -.4111 \\ 0 & 0 & 0 \end{array} \right| \begin{array}{c} 0 & 0 & 0 \\ .7071 & .9798 & .7273 \end{array} \right)$$

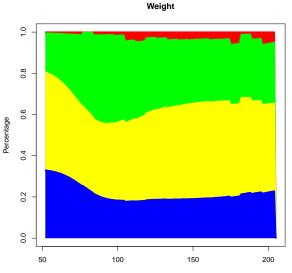
Meyer and Hill

- Showed that Covariance Functions and Random Regression Models were the same.
- RRM estimates **H**^{*} directly from data, and for genetic and PE effects, and any other random effects.
- See examples in Exercises, with R.

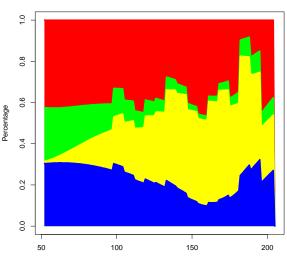
Percentage Variation



Percentage Variation



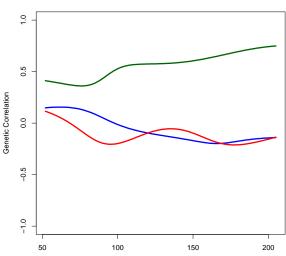
Percentage Variation



Number of Visits

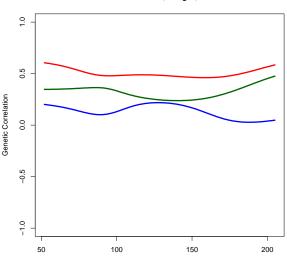
Age, d

Correlations



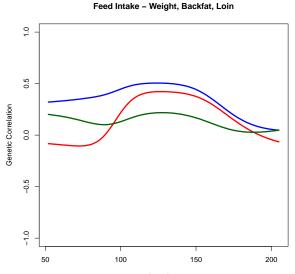
Weight – Visits, Duration, Backfat

Correlations



Loin - Feed Intake, Weight, Backfat

Correlations



Age, days

Summer Course