LRS

CGIL

July-Aug 2012

Intro

- Animals are measured for many economic traits
- Traits have genetic and other correlations
- Can improve accuracy of EBV through correlations, low heritability traits gain more
- Correlations need to be accurate
- MT analyses easier in 2012
- One big analysis versus several small analyses
- Can account to some degree for selection on one trait versus others
- Models for each trait can be different
- All have animal additive genetic effects in common

$$y_{1ij} = B_{1i} + a_{1j} + e_{1ij}$$

 $y_{2kj} = C_{2k} + a_{2j} + e_{2kj}$

OR

$$y_{tikj} = B_{ti} + C_{tk} + a_{tj} + e_{tikj}$$

where values put in for B_{2i} would be 0, and values put in for C_{1k} would be 0.

Parameters

$$\mathbf{G} = \begin{pmatrix} g_{11} & g_{12} \\ g_{12} & g_{22} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 15 \end{pmatrix}$$
$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} \\ r_{12} & r_{22} \end{pmatrix} = \begin{pmatrix} 10 & 5 \\ 5 & 100 \end{pmatrix}$$

$$\rho_g = 2/(15)^{.5} = .52,$$

$$\rho_r = 5/(1000)^{.5} = .16$$

$$h_1^2 = \frac{1}{11} = .09$$

$$h_2^2 = \frac{15}{115} = .13$$

Generating Records

$$\begin{aligned} \mathbf{G} &= \mathbf{L}_{G}\mathbf{L}'_{G} \\ &= \begin{pmatrix} 1 & 0 \\ 2 & (11)^{.5} \end{pmatrix} \mathbf{L}'_{G} \\ \text{and } \mathbf{R} &= \mathbf{L}_{R}\mathbf{L}'_{R} \\ &= \begin{pmatrix} (10)^{.5} & 0 \\ (2.5)^{.5} & (97.5)^{.5} \end{pmatrix} \mathbf{L}'_{R}. \end{aligned}$$
$$\begin{pmatrix} y_{1ij} \\ y_{2kj} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 6.7 \\ 6.3 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 \\ 25 \\ 40 \\ 55 \end{pmatrix} \\ &+ \begin{pmatrix} \text{Parent Ave. Trait 1=0} \\ \text{Parent Ave. Trait 2=0} \end{pmatrix} + (1)^{.5} \begin{pmatrix} 1 & 0 \\ 2 & (11)^{.5} \end{pmatrix} \begin{pmatrix} .6942 \\ -1.3027 \end{pmatrix} \\ &+ \begin{pmatrix} (10)^{.5} & 0 \\ (2.5)^{.5} & (97.5)^{.5} \end{pmatrix} \begin{pmatrix} -.5324 \\ -.9468 \end{pmatrix} \end{aligned}$$

LRS (CGIL)

Data

Animal	Sire	Dam	B-level	C-level	Trait 1	Trait 2
1	0	0	1	1	2.3	39
2	0	0	1	2	2.6	39
3	0	0	1	3	9.8	53
4	0	0	1	1	4.7	4
5	0	0	1	2	5.5	63
6	1	3	2	3	2.5	64
7	1	4	2	2	8.4	35
8	1	5	2	3	8.2	41
9	2	3	2	1	9.0	27
10	2	4	2	1	7.8	32
11	2	5	2	2	2.8	46
12	6	10	2	3	7.4	67

Culling

Animal	Sire	Dam	B-level	C-level	Trait 1	Trait 2
1	0	0	1	1	2.3	
2	0	0	1	2	2.6	
3	0	0	1	3	9.8	53
4	0	0	1	1	4.7	4
5	0	0	1	2	5.5	63
6	1	3	2	3	2.5	
7	1	4	2	2	8.4	35
8	1	5	2	3	8.2	41
9	2	3	2	1	9.0	27
10	2	4	2	1	7.8	32
11	2	5	2	2	2.8	
12	6	10	2	3	7.4	67

Constructing MME

$$\begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{X}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_2 \end{pmatrix} \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{pmatrix} + \begin{pmatrix} \mathbf{Z}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_2 \end{pmatrix} \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \end{pmatrix} + \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \end{pmatrix}$$
$$Var \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{A}g_{11} & \mathbf{A}g_{12} \\ \mathbf{A}g_{12} & \mathbf{A}g_{22} \end{pmatrix}$$
$$Var \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{I}r_{11} & \mathbf{I}r_{12} \\ \mathbf{I}r_{12} & \mathbf{I}r_{22} \end{pmatrix}$$

if both traits observed on all animals.

May be more convenient to have traits arranged within animals (as in the tables) rather than animals within traits.

$$\begin{pmatrix} \mathbf{X}'_{1}\mathbf{R}^{11}\mathbf{X}_{1} & \mathbf{X}'_{1}\mathbf{R}^{12}\mathbf{X}_{2} & \mathbf{X}'_{1}\mathbf{R}^{11}\mathbf{Z}_{1} & \mathbf{X}'_{1}\mathbf{R}^{12}\mathbf{Z}_{2} \\ \mathbf{X}'_{2}\mathbf{R}^{21}\mathbf{X}_{1} & \mathbf{X}'_{2}\mathbf{R}^{22}\mathbf{X}_{2} & \mathbf{X}'_{2}\mathbf{R}^{21}\mathbf{Z}_{1} & \mathbf{X}'_{2}\mathbf{R}^{22}\mathbf{Z}_{2} \\ \mathbf{Z}'_{1}\mathbf{R}^{11}\mathbf{X}_{1} & \mathbf{Z}'_{1}\mathbf{R}^{12}\mathbf{X}_{2} & \mathbf{Z}'_{1}\mathbf{R}^{11}\mathbf{Z}_{1} + \mathbf{A}^{-1}\mathbf{g}^{11} & \mathbf{Z}'_{1}\mathbf{R}^{12}\mathbf{Z}_{2} + \mathbf{A}^{-1}\mathbf{g}^{12} \\ \mathbf{Z}'_{2}\mathbf{R}^{21}\mathbf{X}_{1} & \mathbf{Z}'_{2}\mathbf{R}^{22}\mathbf{X}_{2} & \mathbf{Z}'_{2}\mathbf{R}^{21}\mathbf{Z}_{1} + \mathbf{A}^{-1}\mathbf{g}^{21} & \mathbf{Z}'_{2}\mathbf{R}^{22}\mathbf{Z}_{2} + \mathbf{A}^{-1}\mathbf{g}^{22} \end{pmatrix} \begin{pmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \mathbf{a}_{1} \\ \mathbf{a}_{2} \end{pmatrix} \\ = \begin{pmatrix} \mathbf{X}'_{1}\mathbf{R}^{11}\mathbf{y}_{1} + \mathbf{X}'_{1}\mathbf{R}^{12}\mathbf{y}_{2} \\ \mathbf{X}'_{2}\mathbf{R}^{21}\mathbf{y}_{1} + \mathbf{X}'_{2}\mathbf{R}^{22}\mathbf{y}_{2} \\ \mathbf{Z}'_{1}\mathbf{R}^{11}\mathbf{y}_{1} + \mathbf{Z}'_{1}\mathbf{R}^{12}\mathbf{y}_{2} \end{pmatrix}$$

$$= \left(\begin{array}{c} X'_1 R^{11} y_1 + X'_1 R^{12} y_2 \\ X'_2 R^{21} y_1 + X'_2 R^{22} y_2 \\ Z'_1 R^{11} y_1 + Z'_1 R^{12} y_2 \\ Z'_2 R^{21} y_1 + Z'_2 R^{22} y_2 \end{array}\right)$$

MME, No Residual Covariances

$$\begin{pmatrix} \mathsf{X}'_1 \mathsf{R}^{11} \mathsf{X}_1 & \mathbf{0} & \mathsf{X}'_1 \mathsf{R}^{11} \mathsf{Z}_1 & \mathbf{0} \\ \mathbf{0} & \mathsf{X}'_2 \mathsf{R}^{22} \mathsf{X}_2 & \mathbf{0} & \mathsf{X}'_2 \mathsf{R}^{22} \mathsf{Z}_2 \\ \mathsf{Z}'_1 \mathsf{R}^{11} \mathsf{X}_1 & \mathbf{0} & \mathsf{Z}'_1 \mathsf{R}^{11} \mathsf{Z}_1 + \mathsf{A}^{-1} g^{11} & \mathsf{A}^{-1} g^{12} \\ \mathbf{0} & \mathsf{Z}'_2 \mathsf{R}^{22} \mathsf{X}_2 & \mathsf{A}^{-1} g^{21} & \mathsf{Z}'_2 \mathsf{R}^{22} \mathsf{Z}_2 + \mathsf{A}^{-1} g^{22} \end{pmatrix} \begin{pmatrix} \mathsf{b}_1 \\ \mathsf{b}_2 \\ \mathsf{a}_1 \\ \mathsf{a}_1 \end{pmatrix} \\ = \begin{pmatrix} \mathsf{X}'_1 \mathsf{R}^{11} \mathsf{y}_1 \\ \mathsf{X}'_2 \mathsf{R}^{22} \mathsf{y}_2 \\ \mathsf{Z}'_1 \mathsf{R}^{11} \mathsf{y}_1 \\ \mathsf{Z}'_2 \mathsf{R}^{22} \mathsf{y}_2 \end{pmatrix}$$

MME, No genetic correlations

$$\begin{pmatrix} \mathsf{X}'_1 \mathsf{R}^{11} \mathsf{X}_1 & \mathsf{X}'_1 \mathsf{R}^{12} \mathsf{X}_2 & \mathsf{X}'_1 \mathsf{R}^{11} \mathsf{Z}_1 & \mathsf{X}'_1 \mathsf{R}^{12} \mathsf{Z}_2 \\ \mathsf{X}'_2 \mathsf{R}^{21} \mathsf{X}_1 & \mathsf{X}'_2 \mathsf{R}^{22} \mathsf{X}_2 & \mathsf{X}'_2 \mathsf{R}^{21} \mathsf{Z}_1 & \mathsf{X}'_2 \mathsf{R}^{22} \mathsf{Z}_2 \\ \mathsf{Z}'_1 \mathsf{R}^{11} \mathsf{X}_1 & \mathsf{Z}'_1 \mathsf{R}^{12} \mathsf{X}_2 & \mathsf{Z}'_1 \mathsf{R}^{11} \mathsf{Z}_1 + \mathsf{A}^{-1} \mathsf{g}^{11} & \mathsf{Z}'_1 \mathsf{R}^{12} \mathsf{Z}_2 \\ \mathsf{Z}'_2 \mathsf{R}^{21} \mathsf{X}_1 & \mathsf{Z}'_2 \mathsf{R}^{22} \mathsf{X}_2 & \mathsf{Z}'_2 \mathsf{R}^{21} \mathsf{Z}_1 & \mathsf{Z}'_2 \mathsf{R}^{22} \mathsf{Z}_2 + \mathsf{A}^{-1} \mathsf{g}^{22} \end{pmatrix} \begin{pmatrix} \mathsf{b}_1 \\ \mathsf{b}_2 \\ \mathsf{a}_1 \\ \mathsf{a}_2 \end{pmatrix} \\ & \begin{pmatrix} \mathsf{X}'_1 \mathsf{R}^{11} \mathsf{y}_1 + \mathsf{X}'_1 \mathsf{R}^{12} \mathsf{y}_2 \\ \mathsf{X}'_2 \mathsf{R}^{21} \mathsf{y}_1 + \mathsf{X}'_2 \mathsf{R}^{22} \mathsf{y}_2 \end{pmatrix}$$

$$= \left(\begin{array}{c} X'_1 R^{11} y_1 + X'_1 R^{12} y_2 \\ X'_2 R^{21} y_1 + X'_2 R^{22} y_2 \\ Z'_1 R^{11} y_1 + Z'_1 R^{12} y_2 \\ Z'_2 R^{21} y_1 + Z'_2 R^{22} y_2 \end{array}\right)$$

Residual Matrices and Missing Traits

$$\begin{aligned} \mathbf{E}_{12} &= \left(\begin{array}{cc} 10 & 5 \\ 5 & 100 \end{array} \right)^{-1} \\ \mathbf{E}_{1} &= \left(\begin{array}{cc} 10 & 0 \\ 0 & 0 \end{array} \right)^{-} \\ \mathbf{E}_{2} &= \left(\begin{array}{cc} 0 & 0 \\ 0 & 100 \end{array} \right)^{-} \end{aligned}$$

B_{11}	=	5.02
B_{12}	=	6.56
C_{21}	=	20.09
<i>C</i> ₂₂	=	49.06
C ₂₃	=	51.96

Animal Solutions

Animal	Sire	Dam	Trait 1	Trait 2
1	0	0	36	-1.68
2	0	0	07	1.04
3	0	0	.41	1.17
4	0	0	04	-1.49
5	0	0	.06	.96
6	1	3	10	14
7	1	4	20	-2.30
8	1	5	14	96
9	2	3	.31	1.62
10	2	4	.14	1.13
11	2	5	18	.65
12	6	10	.16	1.51

Sheep - Growth System

- survival after 24 h
- birthweight, kg
- 50-d weight, kg
- 50-100 d gain, kg
- ultrasound fat, mm
- ultrasound loin, cm

Sheep - Ewe Reproduction System

- age at first lambing, d
- number born at first lambing
- number weaned from first lambing
- interval between lambings
- number born at later lambings
- number weaned from later lambings

Swine - Test Station Growth

- number of visits to feeder per day
- time spent at feeder per day
- feed consumed per day
- weight per day
- ultrasound fat, mm, at intervals
- ultrasound loin, cm, at intervals

Dairy Cattle - Test Day System

- First, second, third and later lactations
- Milk, fat, protein yields and SCS
- Random regressions order 5

In Practice

Dairy Cattle - Fertility System

- First versus second and later calvings
- Age at first calving/Interval calving to first service
- Calving ease
- Stillbirths
- Gestation length/Days Open
- Interval first service to conception
- Non-return rate 56 days
- Number of services
- Calf size

Covariance Estimation

- Scalars to vectors and matrices of order t
- $\mathbf{x}'_i \mathbf{x} = 5$ to $t \times t$ matrix, invert, and compute Cholesky decomposition.
- Noise is $sol_i = sol_i + \mathbf{L}\mathbf{w}$ where w is a vector of random normal deviates.
- Genetic matrix is inverted Wishart,

$$\left(\begin{array}{cc} \hat{a'}_1 \mathbf{A}^{-1} \hat{a}_1 & \hat{a'}_1 \mathbf{A}^{-1} \hat{a}_2 \\ \hat{a'}_2 \mathbf{A}^{-1} \hat{a}_1 & \hat{a'}_2 \mathbf{A}^{-1} \hat{a}_2 \end{array}\right)$$

Residual matrix, should estimate missing residuals

$$\operatorname{res}_{k*}' = \begin{pmatrix} \mathsf{R}_{oo} & \mathsf{R}_{om} \\ \mathsf{R}_{mo} & \mathsf{R}_{mm} \end{pmatrix} \begin{pmatrix} \mathsf{R}_{oo}^{-1} & \mathsf{0} \\ \mathsf{0} & \mathsf{0} \end{pmatrix} \begin{pmatrix} \mathsf{e}_{o} \\ \mathsf{0} \end{pmatrix}$$
$$\mathsf{S}_{e} = \left(\sum_{k=1}^{N} (\operatorname{res}_{k*}' \operatorname{res}_{k*}) + \nu_{e} \mathsf{R}_{e}\right)$$

- Difficult to determine burn-in length, so many parameters
- Start two chains with completely different starting values, same priors and degrees of belief, and with the same random number seed. Eventually the two chains would become the same.
- Maybe too many missing records on a trait, then restrict data to animals with all traits available(?)
- Will give you SE on correlation estimates

$$I=w_1\hat{a}_1+w_2\hat{a}_2+\cdots$$

where \hat{a}_i are EBVs and w_i are relative economic weights. Indexes should use EBVs from MT analyses.