Repeated Records

LRS

CGIL

July-Aug 2012

Repeated Records

- Cows, each lactation another measure of yield
- Sows, each parity another observation of litter size
- Race horses, each race another measure of speed
- Dog trials, each event another measure of ability (tracking, retrieving)
- Deer, each year another measure of antler yield
- Animals, each disease occurrence another measure of immune response
- No repeated measures on growth, happens only once

PE Effects

- Each time a trait on an individual is observed, assumed genetic correlation between each measure equals 1.
- Environment can affect animal performance, each measurement or observation on the same animal can have a constant PE effect associated with it.

Model

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \left(egin{array}{cc} \mathbf{0} & \mathbf{Z} \end{array}
ight) \left(egin{array}{c} \mathbf{a}_0 \\ \mathbf{a}_r \end{array}
ight) + \mathbf{Z}\mathbf{p} + \mathbf{e},$$

where

LRS (CGIL) Summer Course July-Aug 2012 4 / 23

Prior Distributions

$$\begin{aligned} \mathbf{a} \mid \mathbf{A}, \sigma_a^2 &\sim N(\mathbf{0}, \mathbf{A}\sigma_a^2) \\ \mathbf{p} \mid \mathbf{I}, \sigma_p^2 &\sim N(\mathbf{0}, \mathbf{I}\sigma_p^2) \\ \mathbf{e} &\sim N(\mathbf{0}, \mathbf{I}\sigma_e^2) \\ \mathbf{G} &= \begin{pmatrix} \mathbf{A}\sigma_a^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}\sigma_p^2 \end{pmatrix}. \end{aligned}$$

$$r = \frac{\sigma_a^2 + \sigma_p^2}{\sigma_a^2 + \sigma_p^2 + \sigma_e^2}$$

$$h^2 = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_p^2 + \sigma_e^2}$$

Simulation

Animal	Sire	Dam	Year 1	Year 2	Year 3
7	1	2			
8	3	4		$\sqrt{}$	
9	5	6			$\sqrt{}$
10	1	4		$\sqrt{}$	$\sqrt{}$
11	3	6			$\sqrt{}$
12	1	2			·

Additive Genetic Values

Animal	Parent Ave.	RND	$(36*b_i)^{.5}$	TBV
1	0.0	-2.5038	6.0	-15.0228
2	0.0	3490	6.0	-2.0940
3	0.0	2265	6.0	-1.3590
4	0.0	3938	6.0	-2.3628
5	0.0	1.4786	6.0	8.8716
6	0.0	2.3750	6.0	14.2500
7	-8.5584	8166	4.2426	-12.0229
8	-1.8609	1.0993	4.2426	2.8030
9	11.5608	1.5388	4.2426	18.0893
10	-8.6928	.0936	4.2426	-8.2957
11	6.4455	1.3805	4.2426	12.3024
12	-8.5584	-1.2754	4.2426	-13.9694

PE Values

Animal	TBV	PE
1	-15.02	2.97
2	-2.09	-9.04
3	-1.36	4.44
4	-2.36	-4.16
5	8.87	-5.68
6	14.25	6.85
7	-12.02	1.38
8	2.80	7.02
9	18.09	5.94
10	-8.30	-5.03
11	12.30	-1.06
12	-13.97	-2.69

Records

$$y_{ijk} = t_i + a_i + p_i + e_{ijk}$$

where t_i is a year effect. Let $t_1 = 53$, $t_2 = 59$, and $t_3 = 65$.

$$\sigma_p = 4$$
, $\sigma_e = 6.9282$

Residual values are generated for each observation as $RND * \sigma_e$. Add the pieces together and round to the nearest whole number.

Records

Animal 7

In year 1,

$$y_{17k} = 53 + (-12.02) + (1.38) + (-3.36) = 39$$

• In year 2,

$$y_{27k} = 59 + (-12.02) + (1.38) + (2.64) = 51$$

• In year 3,

$$y_{37k} = 65 + (-12.02) + (1.38) + (7.64) = 62$$

Animal 12

In year 2,

$$y_{2127k} = 59 + (-13.97) + (-2.69) + (3.66) = 46$$

Data

			Year 1	Year 2	Year 3
Animal	TBV	PE	У1jk	У2jk	У 3jk
7	-12.02	1.38	39	51	62
8	2.80	7.02	48	72	
9	18.09	5.94	71		96
10	-8.30	-5.03		56	47
11	12.30	-1.06			86
12	-13.97	-2.69		46	

$$k_{a} = \sigma_{e}^{2}/\sigma_{a}^{2} = 1.33333, \quad k_{p} = \sigma_{e}^{2}/\sigma_{p}^{2} = 3$$

$$\begin{pmatrix} \mathbf{X}'\mathbf{X} & \mathbf{0} & \mathbf{X}'\mathbf{Z} & \mathbf{X}'\mathbf{Z} \\ \mathbf{0} & \mathbf{A}^{00}k_a & \mathbf{A}^{0r}k_a & \mathbf{0} \\ \mathbf{Z}'\mathbf{X} & \mathbf{A}^{r0}k_a & \mathbf{Z}'\mathbf{Z} + \mathbf{A}^{rr}k_a & \mathbf{Z}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{0} & \mathbf{Z}'\mathbf{Z} & \mathbf{Z}'\mathbf{Z} + \mathbf{I}k_p \end{pmatrix} \begin{pmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{a}}_0 \\ \hat{\mathbf{a}}_r \\ \hat{\mathbf{p}} \end{pmatrix} = \begin{pmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{0} \\ \mathbf{Z}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{pmatrix}$$

For this example, order 21.

Parts of MME

$$\mathbf{X'X} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \quad \mathbf{X'y} = \begin{pmatrix} 158 \\ 225 \\ 291 \end{pmatrix},$$

$$\mathbf{X'Z} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

$$\mathbf{Z'Z} = diag(3 \ 2 \ 2 \ 2 \ 1 \ 1)$$

$$\mathbf{Z'y} = \begin{pmatrix} 152 \\ 120 \\ 167 \\ 103 \\ 86 \\ 46 \end{pmatrix}$$

Solutions

$$\hat{t}_1 = 50.0858 53$$

 $\hat{t}_2 = 63.9612 59$
 $\hat{t}_3 = 72.0582 65$

Animal	TBV	PE	â	ĝ
7	-12.02	1.38	-8.06	-1.66
8	2.80	7.02	1.01	0.79
9	18.09	5.94	11.14	4.51
10	-8.30	-5.03	-8.76	-3.10
11	12.30	-1.06	6.93	1.75
12	-13.97	-2.69	-8.78	-2.30

Variance Estimation

- Solve for each effect in MME, one at a time. Add GS "noise" to each.
- Residual variance, inverted Chi-square.
- Genetic variance, inverted Chi-square.
- PE variance, inverted Chi-square.
- Save samples, also for h^2 and r.

LRS (CGIL) Summer Course July-Aug 2012 15 / 23

Animal Quadratic Form

$$\mathbf{a'A}^{-1}\mathbf{a} = \mathbf{a'T'}^{-1}\mathbf{D}^{-2}\mathbf{Ta}$$

$$\mathbf{Ta}_{i} = a_{i} - 0.5(a_{is} + a_{id})$$

$$= m_{i}, Mendelian$$

$$\mathbf{a'A}^{-1}\mathbf{a} = \sum_{i=1}^{q} m_{i}^{2}d^{ii}$$

$$= \sum_{i=1}^{q} (BY1) + \sum_{i=1}^{q} (BY2) + \dots + \sum_{i=1}^{q} (BYp)$$

$$= \sum_{i=1}^{q} (with) + \sum_{i=1}^{q} (without)$$

Variance estimation may work better if only animals with records are used, not all animals. Try it out.

LRS (CGIL) Summer Course July-Aug 2012 16 / 23

MPPA

Most Probable Producing Ability

MPPA = EBV + PE, can be used to rank animals before they make their next record, and to cull the unprofitable animals.

LRS (CGIL) Summer Course July-Aug 2012 17 / 23

Selection

- Repeated records occur over time.
- Animals may be culled based on poor performance. Animals have different numbers of records.
- First records should always be present when analyzing later records, otherwise bias can occur.

Permanent?

- Repeated records model assumed for many years that the permanent environmental effect of an animal was constant and common to all records of that animal.
- Environmental effects can occur continuously during an animal's life, and therefore, should be considered as cumulative rather than permanent.
- Environmental effects on first records is due to everything that happened up until the first record was made.
- Environmental effects on second records is due to environmental effects up to first record PLUS environmental effects from first to second record.

Cumulative PE

Model Differences

LRS (CGIL) Summer Course July-Aug 2012 21 / 23

Model Differences

LRS (CGIL) Summer Course July-Aug 2012 22 / 23

Model Differences

The covariance matrix of PE effects for an animal with three records:

$$\left(\begin{array}{ccc} \sigma_{p1}^2 & \sigma_{p1}^2 & \sigma_{p1}^2 \\ \sigma_{p1}^2 & (\sigma_{p1}^2 + \sigma_{p2}^2) & (\sigma_{p1}^2 + \sigma_{p2}^2) \\ \sigma_{p1}^2 & (\sigma_{p1}^2 + \sigma_{p2}^2) & (\sigma_{p1}^2 + \sigma_{p2}^2 + \sigma_{p3}^2) \end{array} \right)$$

Three PE effects for animal with 3 records.