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History

Balanced AOV-Fisher

Balanced Data

Every smallest subclass of the model is filled and has the same number of
observations.

All factors in the model were random, except for µ.

Unbiased estimators, simple to calculate, high chance of being
negative.
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History

Henderson, 1953

Published Methods 1, 2, and 3.

Method 1, all random factors, unbalanced data

Method 2, some fixed factors, no interactions with random factors

Method 3, Fitting Constants Method, full model and submodels

All methods unbiased, negative estimates possible, easy to calculate
for those times using desk calculators.
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History

Hartley and Rao, 1967

Published Maximum Likelihood Method

Biased estimates, forced to be positive

Iterative

More accurate than unbiased methods
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History

1971

Restricted Maximum Likelihood presented; Less biased than ML;
Iterative; Accurate; Patterson and Thompson.

Minimum Variance Quadratic Unbiased Estimation presented by C. R.
Rao; if estimates stay positive then same as REML
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History

Gianola et al, 1980’s

Introduced Bayesian methodology; Gibbs Sampling; MCMC methods

Biased estimates (positive), logical approach
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History

Today, 2012

Everyone uses either REML or Bayesian Methods, or both.

Will only present these two methods.
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Covariance Matrices

Intro

Let y be a random vector variable of length n, then the
variance-covariance matrix of y is:

Var(y) = E (yy′)− E (y)E (y′)

=


σ2y1 σy1y2 · · · σy1yn
σy1y2 σ2y2 · · · σy2yn

...
...

. . .
...

σy1yn σy2yn · · · σ2yn


= V

A variance-covariance (VCV) matrix is square, symmetric and should
always be positive definite, i.e. all of the eigenvalues must be positive.
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Covariance Matrices

Quadratic Forms

A general quadratic form is
y′Qy

Usually Q is a symmetric matrix, but not necessarily positive definite.
Examples of Q

Q = I, then y′Qy = y′y which is a total sum of squares of the
elements in y.

Q = J(1/n), then y′Qy = y′Jy(1/n) where n is the length of y.

y′Jy = (y′1)(1′y)

Q = (I− J(1/n)) /(n − 1), then y′Qy gives the variance of the
elements in y, σ2y .
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Covariance Matrices

Var(y)

The (co)variance matrix of y is

V =
s∑

i=1

ZiGiZ
′
iσ

2
i + Rσ20

= ZGZ′ + R.

The inverse of V is

V−1 = R−1 − R−1Z(Z′R−1Z + G−1)−1Z′R−1

Proof is in notes.
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Covariance Matrices

Useful Results

| Ak | = km | A |

For general square matrices, M and U, of the same order then

|MU | = |M | | U |
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Covariance Matrices

Useful Results II

A and D are square and non-singular∣∣∣∣ A −B
C D

∣∣∣∣ =| A | | D + CA−1B |=| D | | A + BD−1C |

If A = I and D = I, and | I |= 1,

| I + CB | = | I + BC |
= | I + B′C′ |
= | I + C′B′ | .
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Covariance Matrices

Useful Results III

| V | = | R + ZGZ′ |
= | R(I + R−1ZGZ′) |
= | R | | I + R−1ZGZ′ |
= | R | | I + Z′R−1ZG |
= | R | | (G−1 + Z′R−1Z)G |
= | R | | G−1 + Z′R−1Z | | G | .
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Covariance Matrices

Useful Results

The mixed model coefficient matrix of Henderson is

C =

(
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

)
then the determinant of C is

| C | = | X′R−1X |
× | G−1 + Z′(R−1 − R−1X(X′R−1X)−X′R−1)Z |

= | Z′R−1Z + G−1 |
× | X′(R−1 − R−1Z(Z′R−1Z + G−1)−1Z′R−1)X |
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Covariance Matrices

Useful Results V

S = R−1 − R−1X(X′R−1X)−X′R−1 then

| C | = | X′R−1X | | G−1 + Z′SZ |
= | Z′R−1Z + G−1 | | X′V−1X | .

LRS (CGIL) Summer Course July-Aug 2012 15 / 39



Covariance Matrices

Derivatives

∂V−1

∂σ2i
= − V−1

∂V

∂σ2i
V−1

∂ ln | V |
∂σ2i

= tr

(
V−1

∂V

∂σ2i

)
P = V−1 − V−1X(X′V−1X)−X′V−1

∂P

∂σ2i
= − P

∂V

∂σ2i
P
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Covariance Matrices

Derivatives

∂V

∂σ2i
= ZiGiZ

′
i

∂ ln | X′V−1X |
∂σ2i

= tr(X′V−1X)−X′V−1
∂V

∂σ2i
V−1X
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Covariance Matrices

Forcing PD

# Compute eigenvalues and eigenvectors

mkPD = function(A){

D = eigen(A)

V = D$values; U = D$vectors

nn = length(V[V<0]); N = nrow(A)

kpos = N-nn; ff = V[kpos]

if( nn > 0){

for(i in 1:nn){

ff = ff*0.8; V[kpos+i] = ff

}

}

B = U %*% diag(V) %*% t(U)

return(B)

}

LRS (CGIL) Summer Course July-Aug 2012 18 / 39



Covariance Matrices

Example

A =


100 80 20 6

80 50 10 2
20 10 6 1

6 2 1 1


The eigenvalues are(

162.1627196 4.1339019 0.9171925 −10.213814
)

Change the last one to be 0.733754, then reconstruct original matrix,

A∗ = UDU′ =


103.87 75.18 18.26 4.94

75.18 56.00 12.16 3.32
18.26 12.16 6.78 1.47

4.94 3.32 1.47 1.29


where U are the eigenvectors.
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Likelihood Based

REML

The multivariate normal distribution likelihood function is

L(y) = (2π)−.5N | V |−.5 exp(−.5(y − Xb)′V−1(y − Xb))

The log of the likelihood, L1 is

L1 = −0.5[N ln(2π) + ln | V | +(y − Xb)′V−1(y − Xb)]

The term N ln(2π) is a constant
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Likelihood Based

REML

| V |=| R | | Z′R−1Z + G−1 | | G |,

and therefore,

ln | V |= ln | R | + ln | G | + ln | Z′R−1Z + G−1 | .

If R = Iσ20, then

ln | R | = ln | Iσ20 |
= ln(σ20)N | I |
= N lnσ20(1)
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Likelihood Based

REML

If G =
∑+ Iσ2i , where i = 1 to s, then

ln | G | =
s∑

i=1

ln | Iσ2i |

=
s∑

i=1

qi lnσ2i

In animal models one of the Gi is equal to Aσ2i . In that case,

ln | Aσ2i |= ln(σ2i )qi | A |

which is
ln | Aσ2i |= qi lnσ2i | A | = qi lnσ2i + ln | A |
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Likelihood Based

REML

C =

(
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

)
and

| C |=| Z′R−1Z + G−1 | | X′V−1X |

so that
ln | C |= ln | Z′R−1Z + G−1 | + ln | X′V−1X |
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Likelihood Based

REML

REML

Restricted (or Residual) maximum likelihood was suggested by Thompson
(1962), and described formally by Patterson and Thompson (1971)

y has a multivariate normal distribution

Translation invariant, QX = 0

Estimates within the allowable parameter space(i.e. zero to plus
infinity)

REML is asymptotically unbiased procedure

Several computational variants
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Likelihood Based

Derivation

Begin with residual contrasts,
K′y

where K′X = 0, and K′ has rank equal to N − r(X)

L(K′y) = (2π)−.5(N−r(X)) | K′VK |−.5 exp(−.5(K′y)′(K′VK)−1(K′y))

The natural log of the likelihood function is

L3 = −.5(N − r(X)) ln(2π)− .5 ln | K′VK | −.5y′K(K′VK)−1K′y

ln | K′VK | = ln | V | + ln | X′V−1X |

and
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Likelihood Based

Derivation II

y′K(K′VK)−1K′y = y′Py = (y − Xb̂)′V−1(y − Xb̂)

for any K′ such that K′X = 0.

L4 = −.5 ln | V | −.5 ln | X′V−1X | −.5(y − Xb̂)′V−1(y − Xb̂)
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Likelihood Based

Computational Variants

Derivative Free approach, search technique to find the parameters
that maximize the log likelihood function.

First Derivatives and EM, the first derivatives of L4 set to zero in
order to maximize the likelihood function. Solutions need to be
obtained by iteration because the resulting equations are non linear.

Second Derivatives, gradient methods used to find the parameters
that make the first derivatives equal to zero. Newton-Raphson
(involves the observed information matrix) and Fishers Method of
Scoring (involves the expected information matrix) have been used.

Average Information, averages the observed and expected
information matrices.
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Likelihood Based

DF REML

Various alternative forms of L4 can be derived.

ln | V |= ln | R | + ln | G | + ln | G−1 + Z′R−1Z |

and that
ln | X′V−1X |= ln | C | − ln | Z′R−1Z + G−1 |

combining these results gives

L4 = −.5 ln | R | −.5 ln | G | −.5 ln | C | −.5y′Py
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Likelihood Based

DF REML

ln | R | = ln | Iσ20 |
= N lnσ20

ln | G | =
s∑

i=1

qi lnσ2i

ln | C | = ln | X′R−1X | + ln | Z′SZ + G−1 |
ln | X′R−1X | = ln | X′Xσ−20 |

= ln(σ−20 )r(X) | X′X |= ln | X′X | −r(X) lnσ20

S = R−1 − R−1X(X′R
−1

X)−X′R
−1

Z′SZ + G−1 = σ−20 Z′MZ + G−1

= σ−20 (Z′MZ + G−1σ20)
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Likelihood Based

DF REML

ln | C |= ln | X′X | −r(X) lnσ20 − q lnσ20 + ln | Z′MZ + G−1σ20 |

L4 = −.5(N − r(X)− q) lnσ20 − .5
s∑

i=1

qi lnσ2i

−.5 ln | C? | −.5y′Py
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Likelihood Based

DF REML

C? =

(
X′X X′Z
Z′X Z′Z + G−1σ20

)

qi lnσ2i = qi lnσ20/αi

= qi (lnσ20 − lnαi )

L4 = −.5[(N − r(X)) lnσ20 −
s∑

i=1

qi lnαi + ln | C? | +y′Py]

y′Py = y′(y − Xb̂− Zû)/σ20
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Likelihood Based

DF REML

Pick several sets of possible parameter values.

Calculate L4 for each set (negative values).

Choose new sets of parameters but closer to the set that had the
largest L4 in the first group.

Continue narrowing the differences among the sets until they are
almost all the same.

To check convergence, start over with a completely different first
group, and re-do.
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Likelihood Based

EM REML, First Derivatives

∂L4
∂σ2i

= −.5trV−1 ∂V
∂σ2i
− .5tr(X′V−1X)−X′V−1

∂V

∂σ2i
V−1X

+.5(y − Xb̂)′V−1
∂V

∂σ2i
V−1(y − Xb̂)

= −.5trPZiZ
′
i + .5y′PZiZ

′
iPy OR

= −.5trP + .5y′PPy
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Likelihood Based

EM REML

trPZiZ
′
i = qi/σ

2
i − trCiiσ

2
0/σ

4
i

and

trP = (N − r(X))σ20 −
s∑

i=1

û′i ûi/σ
2
i

Py = V−1(y − Xb̂)

y′PZiZ
′
iPy = û′iG

−2
i ûi

σ̂2i = (û′iG
−1
i ûi + trG−1i Ciiσ

2
0)/qi

σ̂20 = y′Py/(N − r(X))
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Likelihood Based

EM REML

Slow convergence, many iterations needed.

May not converge at all, to zero or infinity.

trCii may not be possible.
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Likelihood Based

AI REML

The second derivatives give a matrix of quantities. The elements of the
observed information matrix (Gilmour et al. 1995) are

− ∂2L4
∂σ2i ∂σ

2
0

= 0.5y′PZiZ
′
iPy/σ

4
0

− ∂2L4
∂σ2i ∂σ

2
j

= 0.5tr(PZiZ
′
j)− 0.5tr(PZiZ

′
iPZjZ

′
j)

+y′PZiZ
′
iPZjZ

′
jPy/σ

2
0 − 0.5y′PZiZ

′
jPy/σ

2
0

− ∂2L4
∂σ20∂σ

2
0

= y′Py/σ60 − 0.5(N − r(X))/σ40
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Likelihood Based

AI REML

the expected information matrix (Gilmour et al. 1995) are

E [− ∂2L4
∂σ2i ∂σ

2
0

] = 0.5tr(PZiZ
′
i )/σ

2
0

E [− ∂2L4
∂σ2i ∂σ

2
j

] = 0.5tr(PZiZ
′
iPZjZ

′
j)

E [− ∂2L4
∂σ20∂σ

2
0

] = 0.5(N − r(X))/σ40
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Likelihood Based

AI REML

Average Information implies the average of observed and expected
information matrices.

I [σ2i , σ
2
0] = 0.5y′PZiZ

′
iPy/σ

4
0

I [σ2i , σ
2
j ] = y′PZiZ

′
iPZjZ

′
jPy/σ

2
0

I [σ20, σ
2
0] = 0.5y′Py/σ60

Use ASREML package, expensive, memory hog.
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Likelihood Based

Summary

Likelihood methods may not converge.

Likelihood methods may take a long time.

Likelihood estimates have good accuracy.

Accuracy of estimates of variance components depends upon

Number of data points
Number of levels of random factors
True variances
Distribution of random elements over fixed effects levels
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