Covariance Matrices

LRS
CGIL
July-Aug 2012

Balanced AOV-Fisher

Balanced Data

Every smallest subclass of the model is filled and has the same number of observations.

- All factors in the model were random, except for μ.
- Unbiased estimators, simple to calculate, high chance of being negative.

Henderson, 1953

- Published Methods 1, 2, and 3.
- Method 1, all random factors, unbalanced data
- Method 2, some fixed factors, no interactions with random factors
- Method 3, Fitting Constants Method, full model and submodels
- All methods unbiased, negative estimates possible, easy to calculate for those times using desk calculators.

Hartley and Rao, 1967

- Published Maximum Likelihood Method
- Biased estimates, forced to be positive
- Iterative
- More accurate than unbiased methods
- Restricted Maximum Likelihood presented; Less biased than ML; Iterative; Accurate; Patterson and Thompson.
- Minimum Variance Quadratic Unbiased Estimation presented by C. R. Rao; if estimates stay positive then same as REML

Gianola et al, 1980's

- Introduced Bayesian methodology; Gibbs Sampling; MCMC methods
- Biased estimates (positive), logical approach

Today, 2012

- Everyone uses either REML or Bayesian Methods, or both.
- Will only present these two methods.

Intro

Let \mathbf{y} be a random vector variable of length n, then the variance-covariance matrix of \mathbf{y} is:

$$
\begin{aligned}
\operatorname{Var}(\mathbf{y}) & =E\left(\mathbf{y} \mathbf{y}^{\prime}\right)-E(\mathbf{y}) E\left(\mathbf{y}^{\prime}\right) \\
& =\left(\begin{array}{cccc}
\sigma_{y_{1}}^{2} & \sigma_{y_{1} y_{2}} & \cdots & \sigma_{y_{1} y_{n}} \\
\sigma_{y_{1} y_{2}} & \sigma_{y_{2}}^{2} & \cdots & \sigma_{y_{2} y_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{y_{1} y_{n}} & \sigma_{y_{2} y_{n}} & \cdots & \sigma_{y_{n}}^{2}
\end{array}\right) \\
& =\mathbf{V}
\end{aligned}
$$

A variance-covariance (VCV) matrix is square, symmetric and should always be positive definite, i.e. all of the eigenvalues must be positive.

Quadratic Forms

A general quadratic form is

$$
y^{\prime} \mathbf{Q y}
$$

Usually \mathbf{Q} is a symmetric matrix, but not necessarily positive definite. Examples of \mathbf{Q}

- $\mathbf{Q}=\mathbf{I}$, then $\mathbf{y}^{\prime} \mathbf{Q} \mathbf{y}=\mathbf{y}^{\prime} \mathbf{y}$ which is a total sum of squares of the elements in \mathbf{y}.
- $\mathbf{Q}=\mathbf{J}(1 / n)$, then $\mathbf{y}^{\prime} \mathbf{Q} \mathbf{y}=\mathbf{y}^{\prime} \mathbf{J} \mathbf{y}(1 / n)$ where n is the length of \mathbf{y}.

$$
\mathbf{y}^{\prime} \mathbf{J} \mathbf{y}=\left(\mathbf{y}^{\prime} \mathbf{1}\right)\left(\mathbf{1}^{\prime} \mathbf{y}\right)
$$

- $\mathbf{Q}=(\mathbf{I}-\mathbf{J}(1 / n)) /(n-1)$, then $\mathbf{y}^{\prime} \mathbf{Q} \mathbf{y}$ gives the variance of the elements in $\mathbf{y}, \sigma_{y}^{2}$.

The (co)variance matrix of \mathbf{y} is

$$
\begin{aligned}
\mathbf{V} & =\sum_{i=1}^{s} \mathbf{Z}_{i} \mathbf{G}_{i} \mathbf{Z}_{i}^{\prime} \sigma_{i}^{2}+\mathbf{R} \sigma_{0}^{2} \\
& =\mathbf{Z} \mathbf{G} \mathbf{Z}^{\prime}+\mathbf{R}
\end{aligned}
$$

The inverse of \mathbf{V} is

$$
\mathbf{V}^{-1}=\mathbf{R}^{-1}-\mathbf{R}^{-1} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{R}^{-1}
$$

Proof is in notes.

Useful Results

$$
|\mathbf{A} k|=k^{m}|\mathbf{A}|
$$

- For general square matrices, \mathbf{M} and \mathbf{U}, of the same order then

$$
\mathbf{M U}|=|\mathbf{M}|| \mathbf{U} \mid
$$

Useful Results II

- \mathbf{A} and \mathbf{D} are square and non-singular

$$
\begin{aligned}
& \left|\begin{array}{rr}
\mathbf{A} & -\mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right|=|\mathbf{A}|\left|\mathbf{D}+\mathbf{C A}^{-1} \mathbf{B}\right|=|\mathbf{D}|\left|\mathbf{A}+\mathbf{B D}^{-1} \mathbf{C}\right| \\
& \text { If } \mathbf{A}=\mathbf{I} \text { and } \mathbf{D}=\mathbf{I} \text {, and }|\mathbf{I}|=1 \text {, } \\
& \qquad \begin{aligned}
|\mathbf{I}+\mathbf{C B}| & =|\mathbf{I}+\mathbf{B C}| \\
& =\left|\mathbf{I}+\mathbf{B}^{\prime} \mathbf{C}^{\prime}\right| \\
& =\left|\mathbf{I}+\mathbf{C}^{\prime} \mathbf{B}^{\prime}\right|
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{V} \mid & =\left|\mathbf{R}+\mathbf{Z} \mathbf{G Z} \mathbf{Z}^{\prime}\right| \\
& =\left|\mathbf{R}\left(\mathbf{I}+\mathbf{R}^{-1} \mathbf{Z} \mathbf{G Z} \mathbf{Z}^{\prime}\right)\right| \\
& =|\mathbf{R}|\left|\mathbf{I}+\mathbf{R}^{-1} \mathbf{Z} \mathbf{G Z}\right| \\
& =|\mathbf{R}|\left|\mathbf{I}+\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z G}\right| \\
& =|\mathbf{R}|\left|\left(\mathbf{G}^{-1}+\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}\right) \mathbf{G}\right| \\
& =|\mathbf{R}|\left|\mathbf{G}^{-1}+\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}\right||\mathbf{G}| .
\end{aligned}
$$

Useful Results

The mixed model coefficient matrix of Henderson is

$$
\mathbf{C}=\left(\begin{array}{ll}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}
\end{array}\right)
$$

then the determinant of \mathbf{C} is

$$
\begin{aligned}
\mathbf{C} \mid= & \left|\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}\right| \\
& \times\left|\mathbf{G}^{-1}+\mathbf{Z}^{\prime}\left(\mathbf{R}^{-1}-\mathbf{R}^{-1} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{R}^{-1}\right) \mathbf{Z}\right| \\
= & \left|\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}\right| \\
& \times\left|\mathbf{X}^{\prime}\left(\mathbf{R}^{-1}-\mathbf{R}^{-1} \mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{R}^{-1}\right) \mathbf{X}\right|
\end{aligned}
$$

Useful Results V

$$
\begin{aligned}
& \mathbf{S}=\mathbf{R}^{-1}-\mathbf{R}^{-1} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{R}^{-1} \text { then } \\
& \qquad \begin{aligned}
|\mathbf{C}| & =\left|\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}\right|\left|\mathbf{G}^{-1}+\mathbf{Z}^{\prime} \mathbf{S} \mathbf{Z}\right| \\
& =\left|\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}\right|\left|\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right|
\end{aligned}
\end{aligned}
$$

Derivatives

$$
\begin{aligned}
& \frac{\partial \mathbf{V}^{-1}}{\partial \sigma_{i}^{2}}=-\mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_{i}^{2}} \mathbf{V}^{-1} \\
& \frac{\partial \ln |\mathbf{V}|}{\partial \sigma_{i}^{2}}=\operatorname{tr}\left(\mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_{i}^{2}}\right) \\
& \mathbf{P}=\mathbf{V}^{-1}-\mathbf{V}^{-1} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{V}^{-1} \\
& \frac{\partial \mathbf{P}}{\partial \sigma_{i}^{2}}=-\mathbf{P} \frac{\partial \mathbf{V}}{\partial \sigma_{i}^{2}} \mathbf{P}
\end{aligned}
$$

Derivatives

$$
\begin{gathered}
\frac{\partial \mathbf{V}}{\partial \sigma_{i}^{2}}=\mathbf{Z}_{i} \mathbf{G}_{i} \mathbf{Z}_{i}^{\prime} \\
\frac{\partial \ln \left|\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right|}{\partial \sigma_{i}^{2}}=\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_{i}^{2}} \mathbf{V}^{-1} \mathbf{X}
\end{gathered}
$$

Forcing PD

\# Compute eigenvalues and eigenvectors

```
mkPD = function(A){
    D = eigen(A)
    V = D$values; U = D$vectors
    nn = length(V[V<0]); N = nrow(A)
kpos = N-nn; ff = V[kpos]
if( nn > 0){
        for(i in 1:nn){
        ff = ff*0.8; V[kpos+i] = ff
        }
    }
    B = U %*% diag(V) %*% t(U)
    return(B)
}
```


Example

$$
\mathbf{A}=\left(\begin{array}{rrrr}
100 & 80 & 20 & 6 \\
80 & 50 & 10 & 2 \\
20 & 10 & 6 & 1 \\
6 & 2 & 1 & 1
\end{array}\right)
$$

The eigenvalues are

$$
\left(\begin{array}{lllll}
162.1627196 & 4.1339019 & 0.9171925 & -10.213814
\end{array}\right)
$$

Change the last one to be 0.733754 , then reconstruct original matrix,

$$
\mathbf{A}^{*}=\mathbf{U D U}^{\prime}=\left(\begin{array}{rrrr}
103.87 & 75.18 & 18.26 & 4.94 \\
75.18 & 56.00 & 12.16 & 3.32 \\
18.26 & 12.16 & 6.78 & 1.47 \\
4.94 & 3.32 & 1.47 & 1.29
\end{array}\right)
$$

where \mathbf{U} are the eigenvectors.

The multivariate normal distribution likelihood function is

$$
L(\mathbf{y})=(2 \pi)^{-.5 N}|\mathbf{V}|^{-.5} \exp \left(-.5(\mathbf{y}-\mathbf{X b})^{\prime} \mathbf{V}^{-1}(\mathbf{y}-\mathbf{X b})\right)
$$

The \log of the likelihood, L_{1} is

$$
L_{1}=-0.5\left[N \ln (2 \pi)+\ln |\mathbf{V}|+(\mathbf{y}-\mathbf{X b})^{\prime} \mathbf{V}^{-1}(\mathbf{y}-\mathbf{X b})\right]
$$

The term $N \ln (2 \pi)$ is a constant

REML

$$
|\mathbf{V}|=|\mathbf{R}|\left|\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}\right||\mathbf{G}|
$$

and therefore,

$$
\ln |\mathbf{V}|=\ln |\mathbf{R}|+\ln |\mathbf{G}|+\ln \left|\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}\right|
$$

If $\mathbf{R}=\mathbf{I} \sigma_{0}^{2}$, then

$$
\begin{aligned}
\ln |\mathbf{R}| & =\ln \left|\mathbf{I} \sigma_{0}^{2}\right| \\
& =\ln \left(\sigma_{0}^{2}\right)^{N}|\mathbf{I}| \\
& =N \ln \sigma_{0}^{2}(1)
\end{aligned}
$$

REML

If $\mathbf{G}=\sum^{+} \mathbf{I} \sigma_{i}^{2}$, where $i=1$ to s, then

$$
\begin{aligned}
\ln |\mathbf{G}| & =\sum_{i=1}^{s} \ln \left|\mathbf{I} \sigma_{i}^{2}\right| \\
& =\sum_{i=1}^{s} q_{i} \ln \sigma_{i}^{2}
\end{aligned}
$$

In animal models one of the \mathbf{G}_{i} is equal to $\mathbf{A} \sigma_{i}^{2}$. In that case,

$$
\ln \left|\mathbf{A} \sigma_{i}^{2}\right|=\ln \left(\sigma_{i}^{2}\right)^{q_{i}}|\mathbf{A}|
$$

which is

$$
\ln \left|\mathbf{A} \sigma_{i}^{2}\right|=q_{i} \ln \sigma_{i}^{2}|\mathbf{A}|=q_{i} \ln \sigma_{i}^{2}+\ln |\mathbf{A}|
$$

REML

$$
\mathbf{C}=\left(\begin{array}{ll}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}
\end{array}\right)
$$

and

$$
|\mathbf{C}|=\left|\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}\right|\left|\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right|
$$

so that

$$
\ln |\mathbf{C}|=\ln \left|\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}\right|+\ln \left|\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right|
$$

REML

Restricted (or Residual) maximum likelihood was suggested by Thompson (1962), and described formally by Patterson and Thompson (1971)

- y has a multivariate normal distribution
- Translation invariant, $\mathbf{Q X}=\mathbf{0}$
- Estimates within the allowable parameter space(i.e. zero to plus infinity)
- REML is asymptotically unbiased procedure
- Several computational variants

Derivation

Begin with residual contrasts,
$K^{\prime} y$
where $\mathbf{K}^{\prime} \mathbf{X}=0$, and \mathbf{K}^{\prime} has rank equal to $N-r(\mathbf{X})$

$$
L\left(\mathbf{K}^{\prime} \mathbf{y}\right)=(2 \pi)^{-.5(N-r(\mathbf{X}))}\left|\mathbf{K}^{\prime} \mathbf{V K}\right|^{-.5} \exp \left(-.5\left(\mathbf{K}^{\prime} \mathbf{y}\right)^{\prime}\left(\mathbf{K}^{\prime} \mathbf{V K}\right)^{-1}\left(\mathbf{K}^{\prime} \mathbf{y}\right)\right)
$$

The natural log of the likelihood function is

$$
\begin{gathered}
L_{3}=-.5(N-r(\mathbf{X})) \ln (2 \pi)-.5 \ln \left|\mathbf{K}^{\prime} \mathbf{V K}\right|-.5 \mathbf{y}^{\prime} \mathbf{K}\left(\mathbf{K}^{\prime} \mathbf{V K}\right)^{-1} \mathbf{K}^{\prime} \mathbf{y} \\
\ln \left|\mathbf{K}^{\prime} \mathbf{V K}\right|=\ln |\mathbf{V}|+\ln \left|\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right|
\end{gathered}
$$

and

Derivation II

$$
\mathbf{y}^{\prime} \mathbf{K}\left(\mathbf{K}^{\prime} \mathbf{V K}\right)^{-1} \mathbf{K}^{\prime} \mathbf{y}=\mathbf{y}^{\prime} \mathbf{P y}=(\mathbf{y}-\mathbf{X} \hat{\mathbf{b}})^{\prime} \mathbf{V}^{-1}(\mathbf{y}-\mathbf{X} \hat{\mathbf{b}})
$$

for any \mathbf{K}^{\prime} such that $\mathbf{K}^{\prime} \mathbf{X}=\mathbf{0}$.

$$
L_{4}=-.5 \ln |\mathbf{V}|-.5 \ln \left|\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right|-.5(\mathbf{y}-\mathbf{X} \hat{\mathbf{b}})^{\prime} \mathbf{V}^{-1}(\mathbf{y}-\mathbf{X} \hat{\mathbf{b}})
$$

Computational Variants

- Derivative Free approach, search technique to find the parameters that maximize the log likelihood function.
- First Derivatives and EM, the first derivatives of L_{4} set to zero in order to maximize the likelihood function. Solutions need to be obtained by iteration because the resulting equations are non linear.
- Second Derivatives, gradient methods used to find the parameters that make the first derivatives equal to zero. Newton-Raphson (involves the observed information matrix) and Fishers Method of Scoring (involves the expected information matrix) have been used.
- Average Information, averages the observed and expected information matrices.

Various alternative forms of L_{4} can be derived.

$$
\ln |\mathbf{V}|=\ln |\mathbf{R}|+\ln |\mathbf{G}|+\ln \left|\mathbf{G}^{-1}+\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}\right|
$$

and that

$$
\ln \left|\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right|=\ln |\mathbf{C}|-\ln \left|\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{G}^{-1}\right|
$$

combining these results gives

$$
L_{4}=-.5 \ln |\mathbf{R}|-.5 \ln |\mathbf{G}|-.5 \ln |\mathbf{C}|-.5 \mathbf{y}^{\prime} \mathbf{P y}
$$

$$
\begin{aligned}
\ln |\mathbf{R}| & =\ln \left|\mathbf{l} \sigma_{0}^{2}\right| \\
& =N \ln \sigma_{0}^{2} \\
\ln |\mathbf{G}| & =\sum_{i=1}^{s} q_{i} \ln \sigma_{i}^{2} \\
\ln |\mathbf{C}| & =\ln \left|\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}\right|+\ln \left|\mathbf{Z}^{\prime} \mathbf{S} \mathbf{Z}+\mathbf{G}^{-1}\right| \\
\ln \left|\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}\right| & =\ln \left|\mathbf{X}^{\prime} \mathbf{X} \sigma_{0}^{-2}\right| \\
& =\ln \left(\sigma_{0}^{-2}\right)^{r(\mathbf{X})}\left|\mathbf{X}^{\prime} \mathbf{X}\right|=\ln \left|\mathbf{X}^{\prime} \mathbf{X}\right|-r(\mathbf{X}) \ln \sigma_{0}^{2} \\
\mathbf{S} & =\mathbf{R}^{-1}-\mathbf{R}^{-1} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{R}^{-1} \\
\mathbf{Z}^{\prime} \mathbf{S Z}+\mathbf{G}^{-1} & =\sigma_{0}^{-2} \mathbf{Z}^{\prime} \mathbf{M} \mathbf{Z}+\mathbf{G}^{-1} \\
& =\sigma_{0}^{-2}\left(\mathbf{Z}^{\prime} \mathbf{M} \mathbf{Z}+\mathbf{G}^{-1} \sigma_{0}^{2}\right)
\end{aligned}
$$

$\ln |\mathbf{C}|=\ln \left|\mathbf{X}^{\prime} \mathbf{X}\right|-r(\mathbf{X}) \ln \sigma_{0}^{2}-q \ln \sigma_{0}^{2}+\ln \left|\mathbf{Z}^{\prime} \mathbf{M Z}+\mathbf{G}^{-1} \sigma_{0}^{2}\right|$

$$
\begin{aligned}
L_{4}= & -.5(N-r(\mathbf{X})-q) \ln \sigma_{0}^{2}-.5 \sum_{i=1}^{s} q_{i} \ln \sigma_{i}^{2} \\
& -.5 \ln \left|\mathbf{C}^{\star}\right|-.5 \mathbf{y}^{\prime} \mathbf{P y}
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{C}^{\star}=\left(\begin{array}{ll}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{Z}+\mathbf{G}^{-1} \sigma_{0}^{2}
\end{array}\right) \\
q_{i} \ln \sigma_{i}^{2}=q_{i} \ln \sigma_{0}^{2} / \alpha_{i} \\
=q_{i}\left(\ln \sigma_{0}^{2}-\ln \alpha_{i}\right) \\
L_{4}=-.5\left[(N-r(\mathbf{X})) \ln \sigma_{0}^{2}-\sum_{i=1}^{s} q_{i} \ln \alpha_{i}+\ln \left|\mathbf{C}^{\star}\right|+\mathbf{y}^{\prime} \mathbf{P y}\right] \\
\mathbf{y}^{\prime} \mathbf{P y}=\mathbf{y}^{\prime}(\mathbf{y}-\mathbf{X} \hat{\mathbf{b}}-\mathbf{Z} \hat{\mathbf{u}}) / \sigma_{0}^{2}
\end{gathered}
$$

- Pick several sets of possible parameter values.
- Calculate L_{4} for each set (negative values).
- Choose new sets of parameters but closer to the set that had the largest L_{4} in the first group.
- Continue narrowing the differences among the sets until they are almost all the same.
- To check convergence, start over with a completely different first group, and re-do.

$$
\begin{aligned}
\frac{\partial L_{4}}{\partial \sigma_{i}^{2}}= & -.5 \operatorname{tr} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_{i}^{2}}-.5 \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_{i}^{2}} \mathbf{V}^{-1} \mathbf{X} \\
& +.5(\mathbf{y}-\mathbf{X} \hat{\mathbf{b}})^{\prime} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_{i}^{2}} \mathbf{V}^{-1}(\mathbf{y}-\mathbf{X} \hat{\mathbf{b}}) \\
= & -.5 \operatorname{tr} \mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\prime}+.5 \mathbf{y}^{\prime} \mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\prime} \mathbf{P y} \text { OR } \\
= & -.5 \operatorname{tr} \mathbf{P}+.5 \mathbf{y}^{\prime} \mathbf{P P y}
\end{aligned}
$$

EM REML

$$
\operatorname{tr} \mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\prime}=q_{i} / \sigma_{i}^{2}-\operatorname{tr} \mathbf{C}_{i i} \sigma_{0}^{2} / \sigma_{i}^{4}
$$

and

$$
\begin{aligned}
& \operatorname{tr} \mathbf{P}=(N-r(\mathbf{X})) \sigma_{0}^{2}-\sum_{i=1}^{s} \hat{\mathbf{u}}_{i}^{\prime} \hat{\mathbf{u}}_{i} / \sigma_{i}^{2} \\
& \mathbf{P y}=\mathbf{V}^{-1}(\mathbf{y}-\mathbf{X} \hat{\mathbf{b}}) \\
& \mathbf{y}^{\prime} \mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\prime} \mathbf{P y}=\hat{\mathbf{u}}_{i}^{\prime} \mathbf{G}_{i}^{-2} \hat{\mathbf{u}}_{i} \\
& \hat{\sigma}_{i}^{2}=\left(\hat{\mathbf{u}}_{i}^{\prime} \mathbf{G}_{i}^{-1} \hat{\mathbf{u}}_{i}+\operatorname{tr} \mathbf{G}_{i}^{-1} \mathbf{C}_{i i} \sigma_{0}^{2}\right) / q_{i} \\
& \hat{\sigma}_{0}^{2}=\mathbf{y}^{\prime} \mathbf{P y} /(N-r(\mathbf{X}))
\end{aligned}
$$

EM REML

- Slow convergence, many iterations needed.
- May not converge at all, to zero or infinity.
- $\operatorname{tr} \mathbf{C}_{i i}$ may not be possible.

AI REML

The second derivatives give a matrix of quantities. The elements of the observed information matrix (Gilmour et al. 1995) are

$$
\begin{aligned}
-\frac{\partial^{2} L_{4}}{\partial \sigma_{i}^{2} \partial \sigma_{0}^{2}}= & 0.5 \mathbf{y}^{\prime} \mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\prime} \mathbf{P y} / \sigma_{0}^{4} \\
-\frac{\partial^{2} L_{4}}{\partial \sigma_{i}^{2} \partial \sigma_{j}^{2}}= & 0.5 \operatorname{tr}\left(\mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{j}^{\prime}\right)-0.5 \operatorname{tr}\left(\mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\prime} \mathbf{P} \mathbf{Z}_{j} \mathbf{Z}_{j}^{\prime}\right) \\
& +\mathbf{y}^{\prime} \mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\prime} \mathbf{P} \mathbf{Z}_{j} \mathbf{Z}_{j}^{\prime} \mathbf{P y} / \sigma_{0}^{2}-0.5 \mathbf{y}^{\prime} \mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{j}^{\prime} \mathbf{P y} / \sigma_{0}^{2} \\
-\frac{\partial^{2} L_{4}}{\partial \sigma_{0}^{2} \partial \sigma_{0}^{2}}= & \mathbf{y}^{\prime} \mathbf{P y} / \sigma_{0}^{6}-0.5(N-r(\mathbf{X})) / \sigma_{0}^{4}
\end{aligned}
$$

AI REML

the expected information matrix (Gilmour et al. 1995) are

$$
\begin{aligned}
E\left[-\frac{\partial^{2} L_{4}}{\partial \sigma_{i}^{2} \partial \sigma_{0}^{2}}\right] & =0.5 \operatorname{tr}\left(\mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\prime}\right) / \sigma_{0}^{2} \\
E\left[-\frac{\partial^{2} L_{4}}{\partial \sigma_{i}^{2} \partial \sigma_{j}^{2}}\right] & =0.5 \operatorname{tr}\left(\mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\prime} \mathbf{P} \mathbf{Z}_{j} \mathbf{Z}_{j}^{\prime}\right) \\
E\left[-\frac{\partial^{2} L_{4}}{\partial \sigma_{0}^{2} \partial \sigma_{0}^{2}}\right] & =0.5(N-r(\mathbf{X})) / \sigma_{0}^{4}
\end{aligned}
$$

AI REML

Average Information implies the average of observed and expected information matrices.

$$
\begin{aligned}
& I\left[\sigma_{i}^{2}, \sigma_{0}^{2}\right]=0.5 \mathbf{y}^{\prime} \mathbf{P} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\prime} \mathbf{P y} / \sigma_{0}^{4} \\
& I\left[\sigma_{i}^{2}, \sigma_{j}^{2}\right]=\mathbf{y}^{\prime} \mathbf{P Z} \mathbf{Z}_{i}^{\mathbf{P} \mathbf{P Z}_{j} \mathbf{Z}_{j}^{\mathbf{P y}} / \sigma_{0}^{2}} \\
& I\left[\sigma_{0}^{2}, \sigma_{0}^{2}\right]=0.5 \mathbf{y}^{\prime} \mathbf{P y} / \sigma_{0}^{6}
\end{aligned}
$$

Use ASREML package, expensive, memory hog.

Summary

- Likelihood methods may not converge.
- Likelihood methods may take a long time.
- Likelihood estimates have good accuracy.
- Accuracy of estimates of variance components depends upon
- Number of data points
- Number of levels of random factors
- True variances
- Distribution of random elements over fixed effects levels

