Bayesian Methods

LRS

CGIL
July-Aug 2012

Daniel Gianola

Bayes Approach

Philosophy

Every variable in a linear model is a random variable having its own distribution function.

Concept

Combine apriori information having $d f$ degrees of belief with N data points to obtain more informed estimates.

Process

The Bayesian process is to
(1) Specify distributions for each random variable of the model.
(2) Combine the distributions into the joint posterior distribution.
(3) Find the conditional marginal distributions from the joint posterior distribution.
(9) Employ Markov Chain Monte Carlo (MCMC) methods to maximize the joint posterior distribution. Gibbs Sampling is a tool in MCMC methods for deriving estimates of parameters from the joint posterior distribution.

Gibbs Sampling (MCMC) Process

Random samples from the conditional marginal distributions for each random variable eventually converge to random samples from the joint posterior distribution.

Joint Posterior Distribution

$$
\mathbf{y}=\mathbf{X} \mathbf{b}+\mathbf{Z a}+\mathbf{e}
$$

Let θ be the vector of random variables and \mathbf{y} is the data vector, then Bayes Theorem gives

$$
\begin{aligned}
p(\theta, \mathbf{y}) & =p(\theta) p(\mathbf{y} \mid \theta) \\
& =p(\mathbf{y}) p(\theta \mid \mathbf{y})
\end{aligned}
$$

$$
\mathbf{y} \mid \mathbf{b}, \mathbf{a}, \sigma_{a}^{2}, \sigma_{e}^{2} \sim N\left(\mathbf{X b}+\mathbf{Z} \mathbf{a}, \mathbf{l} \sigma_{e}^{2}\right)
$$

$p\left(\mathbf{y} \mid \mathbf{b}, \mathbf{a}, \sigma_{a}^{2}, \sigma_{e}^{2}\right) \propto\left(\sigma_{e}^{2}\right)^{(-N / 2)} \exp \left[-(\mathbf{y}-\mathbf{X b}-\mathbf{Z a})^{\prime}(\mathbf{y}-\mathbf{X b}-\mathbf{Z a}) / 2 \sigma_{e}^{2}\right]$

Prior Distributions

Fixed Effects Vector - There is little prior knowledge about the values in b

$$
p(\mathbf{b}) \propto \text { constant }
$$

Random Effects For a,

$$
\mathbf{a} \mid \mathbf{A}, \sigma_{a}^{2} \sim N\left(\mathbf{0}, \mathbf{A} \sigma_{a}^{2}\right)
$$

and

$$
p(\mathbf{a}) \propto\left(\sigma_{a}^{2}\right)^{(-q / 2)} \exp \left[-\mathbf{a}^{\prime} \mathbf{A}^{-1} \mathbf{a} / 2 \sigma_{a}^{2}\right],
$$

where q is the length of \mathbf{a}.

Prior Distributions

Random Factor Variances

$$
\sigma_{a}^{2} \sim q S_{a}^{2} / \chi_{q}^{2}
$$

is a scaled, inverted Chi-square distribution

$$
p\left(\sigma_{a}^{2} \mid v_{a}, S_{a}^{2}\right) \propto\left(\sigma_{a}^{2}\right)^{-\left(\frac{v_{a}}{2}+1\right)} \exp \left(-\frac{v_{a}}{2} \frac{S_{a}^{2}}{\sigma_{a}^{2}}\right)
$$

where v_{a} and S_{a}^{2} are hyperparameters with S_{a}^{2} being a prior guess about the value of σ_{a}^{2} and v_{a} being the degrees of belief in that prior value. Residual Variance

$$
p\left(\sigma_{e}^{2} \mid v_{e}, S_{e}^{2}\right) \propto\left(\sigma_{e}^{2}\right)^{-\left(\frac{v_{e}}{2}+1\right)} \exp \left(-\frac{v_{e}}{2} \frac{S_{e}^{2}}{\sigma_{e}^{2}}\right)
$$

Combining Prior Distributions

$$
p\left(\mathbf{b}, \mathbf{a}, \sigma_{a}^{2}, \sigma_{e}^{2} \mid \mathbf{y}\right) \propto p(\mathbf{b}) p\left(\mathbf{a} \mid \sigma_{a}^{2}\right) p\left(\sigma_{a}^{2}\right) p\left(\sigma_{e}^{2}\right) p\left(\mathbf{y} \mid \mathbf{b}, \mathbf{a}, \sigma_{a}^{2}, \sigma_{e}^{2}\right)
$$

which can be written as

$$
\begin{gathered}
\propto\left(\sigma_{e}^{2}\right)^{-\left(\frac{N+v_{e}}{2}+1\right)} \exp \left[-\frac{1}{2 \sigma_{e}^{2}}\left((\mathbf{y}-\mathbf{X} \mathbf{b}-\mathbf{Z a})^{\prime}(\mathbf{y}-\mathbf{X} \mathbf{b}-\mathbf{Z a})+v_{e} S_{e}^{2}\right)\right] \\
\left(\sigma_{a}^{2}\right)^{-\left(\frac{q+v_{a}}{2}+1\right)} \exp \left[-\frac{1}{2 \sigma_{a}^{2}}\left(\mathbf{a}^{\prime} \mathbf{A}^{-1} \mathbf{a}+v_{a} S_{a}^{2}\right)\right]
\end{gathered}
$$

Conditional Marginal Distributions

$$
b_{i} \mid \mathbf{b}_{-i}, \mathbf{a}, \sigma_{a}^{2}, \sigma_{e}^{2}, \mathbf{y} \sim N\left(\hat{b}_{i}, C_{i, i}^{-1} \sigma_{e}^{2}\right),
$$

for

$$
C_{i, i}=\mathbf{x}_{i}^{\prime} \mathbf{x}_{i} .
$$

Also,

$$
a_{i} \mid \mathbf{b}, \mathbf{a}_{-i}, \sigma_{a}^{2}, \sigma_{e}^{2}, \mathbf{y} \sim N\left(\hat{a}_{i}, C_{i, i}^{-1} \sigma_{e}^{2}\right),
$$

where

$$
C_{i, i}=\left(\mathbf{z}_{i}^{\prime} \mathbf{z}_{i}+A^{i, i} k\right)
$$

for $k=\sigma_{e}^{2} / \sigma_{a}^{2}$.

$$
\sigma_{a}^{2} \mid \mathbf{b}, \mathbf{a}, \sigma_{e}^{2}, \mathbf{y} \sim \tilde{v}_{a} \tilde{S}_{a}^{2} \chi_{\tilde{v}_{a}}^{-2}
$$

for $\tilde{v}_{a}=q+v_{a}$, and $\tilde{S}_{a}^{2}=\left(\mathbf{a}^{\prime} \mathbf{A}^{-1} \mathbf{a}+v_{a} S_{a}^{2}\right) / \tilde{v}_{a}$, and

$$
\sigma_{e}^{2} \mid \mathbf{b}, \mathbf{a}, \sigma_{a}^{2}, \mathbf{y} \sim \tilde{v}_{e} \tilde{S}_{e}^{2} \chi_{\tilde{v}_{e}}^{-2}
$$

for $\tilde{v}_{e}=N+v_{e}$, and $\tilde{S}_{e}^{2}=\left(\mathbf{e}^{\prime} \mathbf{e}+v_{e} S_{e}^{2}\right) / \tilde{v}_{e}$, and $\mathbf{e}=\mathbf{y}-\mathbf{X b}-\mathbf{Z a}$.

Example

$$
\left(\begin{array}{rrrrrr}
5 & 1 & 1 & 1 & 1 & 1 \\
1 & 29 & 7 & -7 & -14 & 0 \\
1 & 7 & 30 & -14 & 8 & -16 \\
1 & -7 & -14 & 36 & -14 & 0 \\
1 & -14 & 8 & -14 & 37 & -16 \\
1 & 0 & -16 & 0 & -16 & 33
\end{array}\right)\left(\begin{array}{l}
\mu \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right)=\left(\begin{array}{r}
238.2 \\
38.5 \\
48.9 \\
64.3 \\
50.5 \\
36.0
\end{array}\right),
$$

where $k=\sigma_{e}^{2} / \sigma_{a}^{2}=14$, and

$$
\mathbf{A}^{-1}=\frac{1}{14}\left(\begin{array}{rrrrr}
28 & 7 & -7 & -14 & 0 \\
7 & 29 & -14 & 8 & -16 \\
-7 & -14 & 35 & -14 & 0 \\
-14 & 8 & -14 & 36 & -16 \\
0 & -16 & 0 & -16 & 32
\end{array}\right)
$$

Computations

The starting values for $\beta=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$, and for $v_{a}=v_{e}=10$, and $S_{e}^{2}=93 \frac{1}{3}$ and $S_{a}^{2}=6 \frac{2}{3}$, so that $k=14$.
Overall mean

$$
\begin{aligned}
\hat{\mu} & =\left(238.2-a_{1}-a_{2}-a_{3}-a_{4}-a_{5}\right) / 5 \\
& =47.64 \\
\mu & =\hat{\mu}+R N D *\left(\sigma_{e}^{2} / 5\right)^{.5} \\
& =47.64+(-1.21) *(4.32) \\
& =42.41
\end{aligned}
$$

Computations

Animal 1

$$
\begin{aligned}
\hat{a}_{1} & =\left(38.5-\mu-7 a_{2}+7 a_{3}+14 a_{4}\right) / 29 \\
& =-.1349 \\
a_{1} & =\hat{a}_{1}+R N D *\left(\sigma_{e}^{2} / 29\right)^{5} \\
& =-.1349+(1.138)(1.794) \\
& =1.9067
\end{aligned}
$$

Same calculations for animals 2 to 5 .

Computations

Residual variance

$$
\begin{aligned}
e_{1} & =38.5-42.41-1.9067=-5.8167 \\
e_{2} & =48.9-42.41+.2203=6.7103 \\
e_{3} & =64.3-42.41+.8879=22.7779 \\
e_{4} & =50.5-42.41+1.3006=9.3906 \\
e_{5} & =36.0-42.41+2.0200=-4.3900 \\
\mathbf{e}^{\prime} \mathbf{e} & =705.1503
\end{aligned}
$$

A new sample value of the residual variance is

$$
\begin{aligned}
\sigma_{e}^{2} & =\left(\mathbf{e}^{\prime} \mathbf{e}+v_{e} S_{e}^{2}\right) / \operatorname{CHI}(15) \\
& =(705.1503+(10)(93.3333)) / 17.1321 \\
& =95.6382
\end{aligned}
$$

Computations

Additive genetic variance

$$
\mathbf{a}^{\prime} \mathbf{A}^{-1} \mathbf{a}=19.85586
$$

$$
\begin{aligned}
\sigma_{a}^{2} & =\left(\mathbf{a}^{\prime} \mathbf{A}^{-1} \mathbf{a}+v_{a} S_{a}^{2}\right) / C H I(15) \\
& =(19.85586+(10)(6.66667)) / 10.7341 \\
& =8.0605
\end{aligned}
$$

A new sample value of the variance ratio becomes

$$
k=95.6382 / 8.0605=11.8650
$$

Repeat many times, many samples.
Chains.

Save Samples

- $\sigma_{e}^{2}, \sigma_{a}^{2}, k, h^{2}$
- Determine burn-in period, number of samples that are not part of the joint posterior distribution. Plot samples on graph.
- Use samples after burn-in to calculate standard errors of estimates.

Changes to Iteration Program

To incorporate Gibbs sampling, and saving samples.

Additive Genetic Component

Contemporary Group Component

Residual Component

Heritability

Heritability

Histogram of SH2[-k]

Summary

- Use REML or Bayes methods only.
- Estimating variances and covariances is more difficult than EBVs.
- Takes more computing time and effort.
- Should be re-done every 5-10 years in routine systems of evaluation.
- Covariance estimates have higher SE than EBVs.

Properties of A matrix

- $\mathbf{A}^{-1}=\mathbf{T}^{\prime-1} \mathbf{D}^{-2} \mathbf{T}^{-1}$ thus, \mathbf{T}^{-1} specifies every mating (parents of each animal). Thus, \mathbf{A}^{-1} accounts for non-random matings.
- Progeny are expected to be random samples of potential progeny.
- Use of \mathbf{A}^{-1} in VC estimation gives an estimate of the base population genetic variance.
- Use of \mathbf{A}^{-1} accounts for reduction in genetic variance due to inbreeding, and due to selective matings, but not due to culling of animals.
- Abilities of \mathbf{A} depend on completeness of pedigrees, depth of pedigrees, and accuracy of parent identification.

Tomorrow

- Cumulative PE effects model
- 11:00 AM, Go to Room 141, Affymetrix Presentation
- Lunch
- Maternal genetic effects model in PM.

