Bayesian Methods

LRS

CGIL

July-Aug 2012

Daniel Gianola

Bayes Approach

Philosophy

Every variable in a linear model is a random variable having its own distribution function.

Concept

Combine *apriori* information having df degrees of belief with N data points to obtain more informed estimates.

LRS (CGIL) Summer Course July-Aug 2012 3 / 25

Process

The Bayesian process is to

- Specify distributions for each random variable of the model.
- Combine the distributions into the joint posterior distribution.
- Find the conditional marginal distributions from the joint posterior distribution.
- Employ Markov Chain Monte Carlo (MCMC) methods to maximize the joint posterior distribution. Gibbs Sampling is a tool in MCMC methods for deriving estimates of parameters from the joint posterior distribution.

Gibbs Sampling (MCMC) Process

Random samples from the conditional marginal distributions for each random variable eventually converge to random samples from the joint posterior distribution.

LRS (CGIL) Summer Course July-Aug 2012 5 / 2

Joint Posterior Distribution

$$y = Xb + Za + e$$

Let θ be the vector of random variables and \mathbf{y} is the data vector, then Bayes Theorem gives

$$\begin{aligned} \rho(\theta, \mathbf{y}) &= \rho(\theta) \ \rho(\mathbf{y} \mid \theta) \\ &= \rho(\mathbf{y}) \ \rho(\theta \mid \mathbf{y}) \end{aligned}$$
$$\mathbf{y} \mid \mathbf{b}, \mathbf{a}, \sigma_a^2, \sigma_e^2 \sim N(\mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{a}, \mathbf{I}\sigma_e^2)$$
$$\rho(\mathbf{y} \mid \mathbf{b}, \mathbf{a}, \sigma_a^2, \sigma_e^2) \propto (\sigma_e^2)^{(-N/2)} \exp\left[-(\mathbf{y} - \mathbf{X}\mathbf{b} - \mathbf{Z}\mathbf{a})'(\mathbf{y} - \mathbf{X}\mathbf{b} - \mathbf{Z}\mathbf{a})/2\sigma_e^2\right]$$

LRS (CGIL) Summer Course July-Aug 2012 6 / 25

Prior Distributions

Fixed Effects Vector - There is little prior knowledge about the values in **b**

$$p(\mathbf{b}) \propto \text{constant}$$

Random Effects For a.

$$\mathbf{a} \mid \mathbf{A}, \sigma_a^2 \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\sigma_a^2)$$

and

$$p(\mathbf{a}) \propto (\sigma_a^2)^{(-q/2)} \exp\left[-\mathbf{a}'\mathbf{A}^{-1}\mathbf{a}/2\sigma_a^2\right],$$

where q is the length of a.

LRS (CGIL) Summer Course July-Aug 2012 7 / 25

Prior Distributions

Random Factor Variances

$$\sigma_a^2 \sim q S_a^2/\chi_q^2$$

is a scaled, inverted Chi-square distribution

$$p(\sigma_a^2 \mid v_a, S_a^2) \propto (\sigma_a^2)^{-(\frac{v_a}{2}+1)} \exp\left(-\frac{v_a}{2} \frac{S_a^2}{\sigma_a^2}\right)$$

where v_a and S_a^2 are hyperparameters with S_a^2 being a prior guess about the value of σ_a^2 and v_a being the degrees of belief in that prior value.

Residual Variance

$$p(\sigma_e^2 \mid v_e, S_e^2) \propto (\sigma_e^2)^{-(\frac{v_e}{2}+1)} \exp\left(-\frac{v_e}{2} \frac{S_e^2}{\sigma_e^2}\right)$$

LRS (CGIL) Summer Course July-Aug 2012 8 / 25

Combining Prior Distributions

$$p(\mathbf{b}, \mathbf{a}, \sigma_a^2, \sigma_e^2 \mid \mathbf{y}) \propto p(\mathbf{b})p(\mathbf{a} \mid \sigma_a^2)p(\sigma_a^2)p(\sigma_e^2)p(\mathbf{y} \mid \mathbf{b}, \mathbf{a}, \sigma_a^2, \sigma_e^2)$$

which can be written as

$$\propto (\sigma_e^2)^{-(\frac{N+\nu_e}{2}+1)} \exp\left[-\frac{1}{2\sigma_e^2}((\mathbf{y} - \mathbf{X}\mathbf{b} - \mathbf{Z}\mathbf{a})'(\mathbf{y} - \mathbf{X}\mathbf{b} - \mathbf{Z}\mathbf{a}) + \nu_e S_e^2)\right]$$
$$(\sigma_a^2)^{-(\frac{q+\nu_a}{2}+1)} \exp\left[-\frac{1}{2\sigma_a^2}(\mathbf{a}'\mathbf{A}^{-1}\mathbf{a} + \nu_a S_a^2)\right]$$

LRS (CGIL) Summer Course July-Aug 2012 9 / 20

Conditional Marginal Distributions

$$b_i \mid \mathbf{b}_{-i}, \mathbf{a}, \sigma_a^2, \sigma_e^2, \mathbf{y} \sim \mathcal{N}(\hat{b}_i, C_{i,i}^{-1} \sigma_e^2),$$

for

$$C_{i,i} = \mathbf{x}_i' \mathbf{x}_i.$$

Also,

$$a_i \mid \mathbf{b}, \mathbf{a}_{-i}, \sigma_a^2, \sigma_e^2, \mathbf{y} \sim N(\hat{a}_i, C_{i,i}^{-1} \sigma_e^2),$$

where

$$C_{i,i}=(\mathbf{z}_i'\mathbf{z}_i+A^{i,i}k),$$

for $k = \sigma_e^2/\sigma_a^2$.

$$\sigma_{\it a}^2 \mid {\bf b}, {\bf a}, \sigma_{\it e}^2, {\bf y} \sim \tilde{\it v}_{\it a} \tilde{\it S}_{\it a}^2 \chi_{\tilde{\it v}_{\it a}}^{-2}$$

for $ilde{v}_a=q+v_a$, and $ilde{S}_a^2=(\mathbf{a}'\mathbf{A}^{-1}\mathbf{a}+v_aS_a^2)/ ilde{v}_a,$ and

$$\sigma_{\rm e}^2 \mid \mathbf{b}, \mathbf{a}, \sigma_{\rm a}^2, \mathbf{y} \sim \tilde{v}_{\rm e} \tilde{S}_{\rm e}^2 \chi_{\tilde{v}_{\rm e}}^{-2}$$

for $\tilde{v}_e = N + v_e$, and $\tilde{S}_e^2 = (e'e + v_eS_e^2)/\tilde{v}_e$, and e = y - Xb - Za.

LRS (CGIL) Summer Course July-Aug 2012

10 / 25

Example

$$\begin{pmatrix} 5 & 1 & 1 & 1 & 1 & 1 \\ 1 & 29 & 7 & -7 & -14 & 0 \\ 1 & 7 & 30 & -14 & 8 & -16 \\ 1 & -7 & -14 & 36 & -14 & 0 \\ 1 & -14 & 8 & -14 & 37 & -16 \\ 1 & 0 & -16 & 0 & -16 & 33 \end{pmatrix} \begin{pmatrix} \mu \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{pmatrix} = \begin{pmatrix} 238.2 \\ 38.5 \\ 48.9 \\ 64.3 \\ 50.5 \\ 36.0 \end{pmatrix},$$

where $k = \sigma_e^2/\sigma_a^2 = 14$, and

$$\mathbf{A}^{-1} = \frac{1}{14} \left(\begin{array}{ccccc} 28 & 7 & -7 & -14 & 0 \\ 7 & 29 & -14 & 8 & -16 \\ -7 & -14 & 35 & -14 & 0 \\ -14 & 8 & -14 & 36 & -16 \\ 0 & -16 & 0 & -16 & 32 \end{array} \right)$$

LRS (CGIL) Summer Course

11 / 25

The starting values for $\beta = (0 \ 0 \ 0 \ 0 \ 0)$, and for $v_a = v_e = 10$, and $S_e^2 = 93\frac{1}{3}$ and $S_a^2 = 6\frac{2}{3}$, so that k = 14.

Overall mean

$$\hat{\mu} = (238.2 - a_1 - a_2 - a_3 - a_4 - a_5)/5$$

$$= 47.64$$

$$\mu = \hat{\mu} + RND * (\sigma_e^2/5)^{.5}$$

$$= 47.64 + (-1.21) * (4.32)$$

$$= 42.41$$

Summer Course July-Aug 2012 12 / 25

Animal 1

$$\hat{a}_1 = (38.5 - \mu - 7a_2 + 7a_3 + 14a_4)/29$$

 $= -.1349$
 $a_1 = \hat{a}_1 + RND * (\sigma_e^2/29)^{.5}$
 $= -.1349 + (1.138)(1.794)$
 $= 1.9067$

Same calculations for animals 2 to 5.

Residual variance

$$e_1 = 38.5 - 42.41 - 1.9067 = -5.8167$$
 $e_2 = 48.9 - 42.41 + .2203 = 6.7103$
 $e_3 = 64.3 - 42.41 + .8879 = 22.7779$
 $e_4 = 50.5 - 42.41 + 1.3006 = 9.3906$
 $e_5 = 36.0 - 42.41 + 2.0200 = -4.3900$
 $\mathbf{e}'\mathbf{e} = 705.1503$

A new sample value of the residual variance is

$$\sigma_e^2 = (e'e + v_e S_e^2)/CHI(15)$$

= $(705.1503 + (10)(93.3333))/17.1321$
= 95.6382.

LRS (CGIL) Summer Course July-Aug 2012

14 / 25

Additive genetic variance

$$\mathbf{a}' \mathbf{A}^{-1} \mathbf{a} = 19.85586$$

$$\sigma_a^2 = (\mathbf{a}' \mathbf{A}^{-1} \mathbf{a} + v_a S_a^2) / CHI(15)$$

= $(19.85586 + (10)(6.66667)) / 10.7341$
= 8.0605 .

A new sample value of the variance ratio becomes

$$k = 95.6382/8.0605 = 11.8650$$

Repeat many times, many samples. Chains.

Save Samples

- \bullet σ_e^2 , σ_a^2 , k, h^2
- Determine burn-in period, number of samples that are not part of the joint posterior distribution. Plot samples on graph.
- Use samples after burn-in to calculate standard errors of estimates.

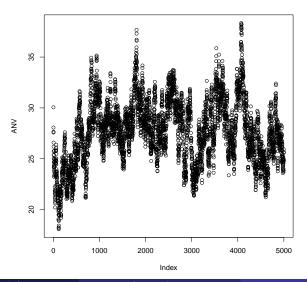
Summer Course July-Aug 2012 16 / 25

Changes to Iteration Program

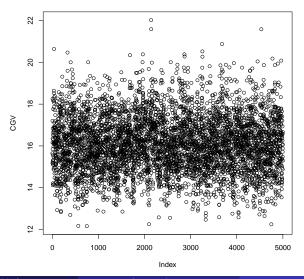
To incorporate Gibbs sampling, and saving samples.

LRS (CGIL) Summer Course July-Aug 2012 17 / 25

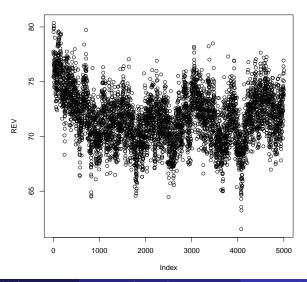
Additive Genetic Component



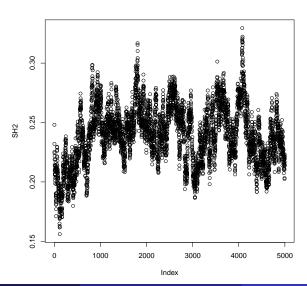
Contemporary Group Component



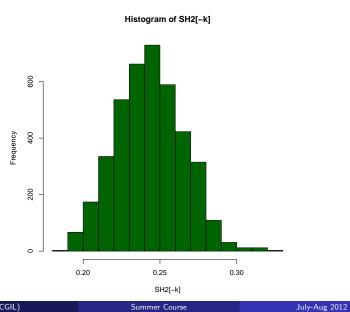
Residual Component



Heritability



Heritability



Summary

- Use REML or Bayes methods only.
- Estimating variances and covariances is more difficult than EBVs.
- Takes more computing time and effort.
- Should be re-done every 5-10 years in routine systems of evaluation.
- Covariance estimates have higher SE than EBVs.

Properties of A matrix

- $A^{-1} = T'^{-1}D^{-2}T^{-1}$ thus, T^{-1} specifies every mating (parents of each animal). Thus, A^{-1} accounts for non-random matings.
- Progeny are expected to be random samples of potential progeny.
- Use of A^{-1} in VC estimation gives an estimate of the base population genetic variance.
- ullet Use of ${f A}^{-1}$ accounts for reduction in genetic variance due to inbreeding, and due to selective matings, but not due to culling of animals.
- Abilities of A depend on completeness of pedigrees, depth of pedigrees, and accuracy of parent identification.

LRS (CGIL) Summer Course July-Aug 2012 24 / 25

Tomorrow

- Cumulative PE effects model
- 11:00 AM, Go to Room 141, Affymetrix Presentation
- Lunch
- Maternal genetic effects model in PM.