Genetic Relationships

LRS

CGIL

July-Aug 2012

Animal	Sire	Dam	Generation Number
BF	DD	HE	1
DD	GA	EC	1
GA			1
EC	GA	FB	1
FB			1
AG	BF	EC	1
HE	DD	FB	1

Animal	Sire	Dam	Generation Number
BF	DD	HE	1
DD	GA	EC	1 2
GA			1
EC	GA	FB	1
FB			1
AG	BF	EC	1
HE	DD	FB	1 2

Animal	Sire	Dam	Generation Number
BF	DD	HE	1
DD	GA	EC	1 2
GA			1 3
EC	GA	FB	1 3
FB			1
AG	BF	EC	1
HE	DD	FB	1 2

Animal	Sire	Dam	Generation Number	
BF	DD	HE	1	
DD	GA	EC	1 2	
GA			1 4	
EC	GA	FB	1 3	
FB			1 4	
AG	BF	EC	1	
HE	DD	FB	1 2	

Animal	Sire	Dam	Ge	Generation Number		
BF	DD	HE	1	2	2	
DD	GA	EC	1	3	4	
GA			1	4	5	
EC	GA	FB	1	3	4	
FB			1	4	5	
AG	BF	EC	1	1	1	
HE	DD	FB	1	2	3	

Animal	Sire	Dam	Ge	enera	atior	n Number
BF	DD	HE	1	2	2	2
DD	GA	EC	1	3	4	4
GA			1	4	5	6
EC	GA	FB	1	3	4	5
FB			1	4	5	6
AG	BF	EC	1	1	1	1
HE	DD	FB	1	2	3	3

Pedigrees Step 2. Sort in order

Animal	Sire	Dam	Generation Number
GA			6
FB			6
EC	GA	FB	5
DD	GA	EC	4
HE	DD	FB	3
BF	DD	HE	2
AG	BF	EC	1

R function

```
border=function(anm,sir,dam){
maxloop=1000
changes = 1
count = 0
mam=length(anm)
old = rep(1, mam)
new = old
while(changes>0){
for (j in 1:mam){
  ks = sir[j]
  kd = dam[j]
  gen = new[j]+1
 if(ks != "NA"){
   js = match(ks,anm)
   if(gen > new[js]){new[js] = gen}
   }
```

LRS (CGIL)

R function

```
if(kd != "NA"){
     jd = match(kd,anm)
     if(gen > new[jd]){new[jd] = gen}
     }
 }
    # for loop
 changes = sum(new - old)
 old = new
 count = count + 1
 if(count > maxloop){changes=0}
 } # while loop
return(new)
 } # function loop
```

```
animal=c("bf","dd","ga","ec","fb","ag","he")
sire=c("dd","ga","NA","ga","NA","bf","dd")
dams=c("he","ec","NA","fb","NA","ec","fb")
gg=border(animal,sire,dams)
ka = order(-gg)
oanm=animal[ka]
osir=sire[ka]
odam=dams[ka]
cbind(oanm.osir.odam)
```

Wright's Coefficient of Relationship

$$w_{ij} = rac{Cov(a_i, a_j)}{(Var(a_i)Var(a_j))^{.5}}$$

 $Cov(a_i, a_j)$ from 0 to 2, numerator relationship. $Var(a_i)$ from 1 to 2 w_{ij} from 0 to 1 Coefficient of Kinship $= \frac{1}{2}Cov(a_i, a_j)$, used in plant breeding. Henderson presented Tabular Method to get $Cov(a_i, a_j)$

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GA	FB	EC	DD	HE	BF	AG
GA	1	0					
FB	0	1					
EC			1				
DD				1			
HE					1		
BF						1	
AG							1

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GA	FB	EC	DD	HE	BF	AG
GA	1	0	1/2	3/4	3/8	9/16	17/32
FB	0	1					
EC	1/2		1				
DD	3/4			1			
HE	3/8				1		
BF	9/16					1	
AG	17/32						1

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GA	FB	EC	DD	HE	BF	AG
GA	1	0	1/2	3/4	3/8	9/16	17/32
FB	0	1	1/2	1/4	5/8	7/16	15/32
EC	1/2	1/2	1				
DD	3/4	1/4		1			
HE	3/8	5/8			1		
BF	9/16	7/16				1	
AG	17/32	15/32					1

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GA	FB	EC	DD	HE	BF	AG
GA	1	0	1/2	3/4	3/8	9/16	17/32
FB	0	1	1/2	1/4	5/8	7/16	15/32
EC	1/2	1/2	1	3/4	5/8	11/16	27/32
DD	3/4	1/4	3/4	5/4	3/4	1	7/8
HE	3/8	5/8	5/8	3/4	9/8	15/16	25/32
BF	9/16	7/16	11/16	1	15/16	11/8	33/32
AG	17/32	15/32	27/32	7/8	25/32	33/32	43/32

$$w_{BF,AG} = \frac{33/32}{((11/8)(43/32))^{.5}} = 0.75867$$

```
numer8 = function(sid,did){
    N = length(sid)+1
    ss = sid + 1  # increase id's by 1
    dd = did + 1  # no 0's in ids
    ss = c(0,ss)
    dd = c(0,dd)
    A = diag(c(1:N))
    A[1,1]=0
```

R function

```
for(i in 2:N){ # row by row
for(j in i:N){ # col within row
 ks=ss[j]
 kd = dd[j]
  if( i == j){
   A[i,j] = 1 + 0.5 * A[ks,kd]  else
  \{ A[i,j] = 0.5*(A[i,ks]+A[i,kd]) \}
     A[i,i] = A[i,i]
 ka = c(2:N)
 B = A[ka,ka] # original animals
 return(B) }
```

Usage

```
# letters converted to numbers
# 1=GA, 2=FB, 3=EC, 4=DD, 5=HE, 6=BF, 7=AG
sid = c(0,0,1,1,4,4,6)
did = c(0,0,2,3,2,5,3)
A = numer8(sid,did)*32
     [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 32 0 16
                   24 12
                           18
                                17
[2,] 0 32 16 8
                       20 14
                                15
[3.]
      16
          16 32
                   24
                       20
                           22
                                27
[4,] 24
         8
              24
                   40
                       24
                           32
                                28
[5.] 12
          20
              20
                   24
                       36
                           30
                                25
[6.] 18
          14
              22
                   32
                       30
                           44
                                33
[7.]
      17
          15
              27
                   28
                       25
                           33
                                43
```

- Add KK with parents GA and HE
- Apply Tabular Method
- Calculate WGA,KK
- Use R function to verify

- A has order equal to number of animals
- Direct inverse not practical
- Henderson(1975) major discovery

Discovery

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix}$$

$$= \mathbf{L}\mathbf{L}'$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & (\frac{1}{2})^{.5} \end{pmatrix} \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & (\frac{1}{2})^{.5} \end{pmatrix}$$

$$\mathbf{L} = \mathbf{T}\mathbf{D}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\frac{1}{2})^{.5} \end{pmatrix}$$

$$\mathbf{A} = \mathbf{T}(\mathbf{D}\mathbf{D}')\mathbf{T}' = \mathbf{T}\mathbf{D}^{2}\mathbf{T}'$$

More Discovery

$$\mathbf{A} = \mathbf{T}\mathbf{D}^{2}\mathbf{T}' = \mathbf{T}\mathbf{B}\mathbf{T}'$$

$$\mathbf{A}^{-1} = \mathbf{T}'^{-1}\mathbf{B}^{-1}\mathbf{T}^{-1}$$

$$\mathbf{T}'^{-1} = \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A}^{-1} = \sum_{i=1}^{n} \mathbf{T}'^{-1}_{i}\mathbf{B}^{-1}_{ii}\mathbf{T}^{-1}_{i}$$

$$= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} (1) (1 \ 0 \ 0 \) + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} (1) (0 \ 1 \ 0 \)$$

$$+ \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{pmatrix} (2) (-\frac{1}{2} \ -\frac{1}{2} \ 1 \)$$

LRS (CGIL)

More Discovery

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} .5 & .5 & -1 \\ .5 & .5 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1.5 & .5 & -1 \\ .5 & 1.5 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

Inverse of **A** can be written from list of pedigrees and \mathbf{B}_{ii}^{-1} values. For inbred animals b_{ii} is less than 0.5. Meuwissen and Luo (1996) method for determining inbreeding.

$$b_{ii} = (0.50 - 0.25 \times (F_s + F_d))$$

 F_s, F_d are inbreeding coefficients of sire and dam of animal *i*.

Meuwissen and Luo Method

- Process animals in chronological order
- Find a row of **T** for animal *i*
- Find diagonal of **B** for animal *i*
- Multiply to find diagonal of A
- Subtract 1 to get F_i

Earlier Example

Animal	Sire	Dam	Fi	b _{ii}
GA			0	1
FB			0	1
EC	GA	FB	0	1/2
DD	GA	EC		

ID vector	T-row	b _i
DD	1	(.525(0+0))=1/2
GA	.5	1
EC	.5	1/2
GA	.25	1
FB	.25	1

Example continued

ID vector	T-row	b _i
DD	1	(.525(0+0)) = 1/2
GA	.5+.25	1
EC	.5	1/2
FB	.25	1

$$\begin{aligned} a_{DD} &= 1^2 (1/2) + (3/4)^2 (1) + (1/2)^2 (1/2) + (1/4)^2 (1) \\ &= (8 + 9 + 2 + 1)/16 \\ &= 1 + (1/4) \\ F_{DD} &= 1/4 \end{aligned}$$

Next animal, HE

ID vector	T-row	b _i
HE	1	(.525(.25 + 0)) = 7/16
DD	.5	1/2
FB	.5	1
GA	.25	1
EC	.25	1/2
GA	.125	1
FB	.125	1

Next animal, HE

ID vector	T-row	bi
HE	1	7/16
DD	.5	1/2
FB	5/8	1
GA	3/8	1
EC	.25	1/2

$$\begin{array}{rcl} a_{HE} &=& 1^2(7/16) + (1/2)^2(1/2) + (5/8)^2(1) + (3/8)^2(1) + (1/4)^2(1/2) \\ &=& (28 \, + \, 8 \, + \, 25 \, + \, 9 \, + \, 2)/64 \\ &=& 1 + (1/8) \\ F_{HE} &=& 1/8 \end{array}$$

Earlier Example

Animal	Sire	Dam	Fi	b _{ii}
GA			0	1
FB			0	1
EC	GA	FB	0	1/2
DD	GA	EC	1/4	1/2
HE	DD	FB	1/8	7/16
BF	DD	HE	3/8	13/32
AG	BF	EC	11/32	13/32

Henderson's Rules

Let $\delta = 1/b_{ii}$, then add

	<u>Animal</u>	<u>Sire</u>	<u>Dam</u>
Animal	δ	5δ	5δ
Sire	5δ	$.25\delta$	$.25\delta$
Dam	5δ	$.25\delta$	$.25\delta$

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	
	GA	FB	EC	DD	HE	BF	AG
GA							
FB							
EC							
DD							
HE							
BF							
AG							

Animal GA, $b_{ii} = 1$ so $\delta = 1$, parents unknown

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	
	GA	FB	EC	DD	HE	BF	AG
GA	1						
FB							
EC							
DD							
HE							
BF							
AG							

Animal FB, $b_{ii} = 1$ so $\delta = 1$, parents unknown

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GA	FB	EC	DD	HE	BF	AG
GA	1						
FB		1					
EC							
DD							
HE							
BF							
AG							

Animal EC, $b_{ii} = 1/2$ so $\delta = 2$, parents known

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GA	FB	EC	DD	HE	BF	AG
GA	1.5	.5	-1				
FB	.5	1.5	-1				
EC	-1	-1	2				
DD							
HE							
BF							
AG							

Animal DD, $b_{ii} = 1/2$ so $\delta = 2$, parents known

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GΑ	FB	EC	DD	HE	BF	AG
GA	2	.5	5	-1			
FB	.5	1.5	-1				
EC	5	-1	2.5	-1			
DD	-1		-1	2			
HE							
BF							
AG							

Animal HE, $b_{ii} = 7/16$ so $\delta = 16/7$, parents known

Writing A^{-1}

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GA	FB	EC	DD	HE	BF	AG
GA	2	.5	5	-1			
FB	.5	1.5 + 4/7	-1	4/7	-8/7		
EC	5	-1	2.5	-1			
DD	-1	4/7	-1	2+4/7	-8/7		
HE		-8/7		-8/7	16/7		
BF							
AG							

Animal BF, $b_{ii} = 13/32$ so $\delta = 32/13$, parents known

Writing A^{-1}

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GA	FB	EC	DD	HE	BF	AG
GA	2	.5	5	-1			
FB	.5	1.5 + 4/7	-1	4/7	-8/7		
EC	5	-1	2.5	-1			
DD	-1	4/7	-1	$2 + \frac{4}{7} + \frac{8}{13}$	$-\frac{8}{7}+\frac{8}{13}$	-16/13	
HE		-8/7		$-\frac{8}{7}+\frac{8}{13}$	$\frac{16}{7} + \frac{8}{13}$	-16/13	
BF				-16/32	-16/13	32/13	
AG							

Animal AG, $b_{ii} = 13/32$ so $\delta = 32/13$, parents known

Writing \mathbf{A}^{-1}

	-,-	-,-	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GA	FB	EC	DD	HE	BF	AG
GA	2	.5	5	-1			
FB	.5	$1.5 + \frac{4}{7}$	-1	$\frac{4}{7}$	$-\frac{8}{7}$		
EC	5	-1	$2.5 + \frac{8}{13}$	-1		$\frac{8}{13}$	$-\frac{16}{13}$
DD	-1	$\frac{4}{7}$	-1	$2 + \frac{4}{7} + \frac{8}{13}$	$-\frac{8}{7}+\frac{8}{13}$	$-\frac{16}{13}$	
HE		$-\frac{8}{7}$		$-\frac{8}{7}+\frac{8}{13}$	$\frac{16}{7} + \frac{8}{13}$	$-\frac{16}{13}$	
BF			$\frac{8}{13}$	$-\frac{16}{32}$	$-\frac{16}{13}$	$\frac{40}{13}$	$-\frac{16}{13}$
AG			$-\frac{16}{13}$			$-\frac{16}{13}$	$\frac{32}{13}$

DONE! Fill in empty spaces with 0.

Bill's Routines

C language routines "wrapped" into R functions.

<pre>xpdinit(nam)</pre>	<pre># initialize pedigree</pre>					
<pre>xpdadd(sire,dam)</pre>	# add a new animal					
xpdd(animal)	# returns bi value					
<pre>xpdf(animal)</pre>	<pre># returns f value</pre>					
<pre>xpdfree()</pre>	<pre># frees up memory after</pre>					
all inbreeding computed						
zzlib = file.choos	<pre>se() # find rclib.dll</pre>					
dyn.load(zzlib)						

zbill = file.choose() # find Bills.R
source(zbill)

Compute Inbreeding

```
animals numbered in chronological order, 1 to nam
sid  # a string of sire numbers, 1 to nam
did  # a string of dam numbers, 1 to nam
xpdint(nam)  # initialize functions
inbc = rep(0,nam)
inbb = rep(0,nam)
```

```
for(i in 1:nam){
    inbc[i] = xpdadd(sid[i],did[i])
    inbb[i] = xpdd(i)
    }
```

A-inverse Function

```
AINV = function(sid,did,bi){
rules=matrix(data=c(1,-.5,-.5,-.5,0.25,0.25,-.5,.25,.2)
  byrow=TRUE,nrow=3)
nam = length(sid); np = nam + 1
 ss = sid+1; dd = did + 1
LAI = matrix(data=c(0),nrow=np,ncol=np)
 for( i in 1:nam){
   ip = i + 1; X = 1/bi[i]
   k = cbind(ip,ss[i],dd[i])
   LAI[k,k] = LAI[k,k] + rules X
   }
 k = c(2:np); C = LAI[k,k]
 return(C) }
```

```
AI = AINV(sid,did,inbb)
```

Sire-MGS Relationships

What would be the rules if

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & 1 \end{array} \right)$$

- Apply Cholesky decomposition
- Form TD^2T'
- Invert T
- Deduce the rules. Try it.

Sire-MGS

Henderson's Rules

Let $\delta = 16/11$, then if both ancestors known add

	<u>Animal</u>	<u>Sire</u>	MGS
Animal	δ	5δ	25δ
Sire	5δ	$.25\delta$	$.125\delta$
MGS	25δ	$.125\delta$	$.0625\delta$

If MGS unknown, $\delta = 4/3$. If Sire unknown, $\delta = 16/15$.

$$y_{ijk...} = Fixed + Random + s_k + e_{ijk...}$$

- Genetic part through sire, records on progeny, half-sibs.
- Each progeny assumed to have one record, first lactations.
- Each progeny from a different, random dam, equal genetic quality.
- Progeny distributed randomly across other effects in the model.
- Sire estimates were Transmitting Abilities, ETA.
- Sires related, **A** based on Sire-MGS relationships, no inbreeding.
- 1970's

Sire-MGS Models

$$y_{ijk...} = Fixed + Random + s_k + .5 s_l + e_{ijk...}$$

- Dams assumed to be random female progeny of the MGS.
- All progeny of a sire are half-sibs.
- One record per progeny.
- One progeny per dam, dams from different genetic levels as indicated by MGS.
- ETA obtained.
- A based on Sire-MGS relationships, no inbreeding.
- Progeny distributed randomly across other effects in the model.

Sire-Dam Models

$$y_{ijk...} = Fixed + Random + s_k + d_l + e_{ijk...}$$

- Dams can have more than one progeny, full-sibs allowed.
- Dams can have different genetic potential.
- Dams not randomly mated to sires.
- Dams can be mated to different sires.
- Dam effects might include maternal effects.
- One record per progeny.
- ETA obtained.
- Progeny distributed randomly across other effects in the model.
- A may be based on Sire-Dam relationships or Sire-MGS relationships, no inbreeding.

Animal Models

$$y_{ijk...} = Fixed + Random + a_k + pe_l + e_{ijk...}$$

- One or more records per animal, but all animals must have a first record.
- PE effects if more than one record included.
- A based on Sires-Dams, takes into account non-random matings, all additive relationships and inbreeding.
- Animals are random progeny from sire-dam matings, i.e. not selected.
- Animals distributed randomly among other factors in the model.
- EBV obtained, the combined additive effect of all loci in the genome.