Genetic Relationships

LRS

CGIL
July-Aug 2012

Pedigrees

Step 1. Chronological Order

Animal	Sire	Dam	Generation Number
BF	DD	HE	1
DD	GA	EC	1
GA			1
EC	GA	FB	1
FB			1
AG	BF	EC	1
HE	DD	FB	1

Pedigrees

Step 1. Chronological Order

Animal	Sire	Dam	Generation Number
BF	DD	HE	1
DD	GA	EC	1
GA			1
EC	GA	FB	1
FB			1
AG	BF	EC	1
HE	DD	FB	1
2			

Pedigrees

Step 1. Chronological Order

Animal	Sire	Dam	Generation Number
BF	DD	HE	1
DD	GA	EC	1
2			
GA			1
3			
EC	GA	FB	1
FB			1
AG	BF	EC	1
HE	DD	FB	1
2			

Pedigrees

Step 1. Chronological Order

Animal	Sire	Dam	Generation Number
BF	DD	HE	1
DD	GA	EC	1
2			
GA			1
4			
EC	GA	FB	1
FB			1
AG	BF	EC	1
AE	DD	FB	1

Pedigrees

Step 1. Chronological Order

Animal	Sire	Dam	Generation Number		
BF	DD	HE	1	2	2
DD	GA	EC	1	3	4
GA			1	4	5
EC	GA	FB	1	3	4
FB			1	4	5
AG	BF	EC	1	1	1
HE	DD	FB	1	2	3

Pedigrees

Step 1. Chronological Order

Animal	Sire	Dam	Generation Number			
BF	DD	HE	1	2	2	2
DD	GA	EC	1	3	4	4
GA			1	4	5	6
EC	GA	FB	1	3	4	5
FB			1	4	5	6
AG	BF	EC	1	1	1	1
HE	DD	FB	1	2	3	3

Pedigrees

Step 2. Sort in order

Animal	Sire	Dam	Generation Number
GA			6
FB			6
EC	GA	FB	5
DD	GA	EC	4
HE	DD	FB	3
BF	DD	HE	2
AG	BF	EC	1

```
border=function(anm,sir,dam){
maxloop=1000
changes = 1
count = 0
mam=length(anm)
old = rep(1,mam)
new = old
while(changes>0){
for (j in 1:mam){
    ks = sir[j]
    kd = dam[j]
    gen = new[j]+1
    if(ks != "NA"){
    js = match(ks,anm)
    if(gen > new[js]){new[js] = gen}
    }
```

```
            if(kd != "NA"){
    jd = match(kd,anm)
    if(gen > new[jd]){new[jd] = gen}
    }
    } # for loop
    changes = sum(new - old)
    old = new
    count = count + 1
    if(count > maxloop){changes=0}
    } # while loop
return(new)
    } # function loop
```


Usage

```
animal=c("bf", "dd", "ga", "ec", "fb", "ag", "he")
sire=c("dd", "ga", "NA", "ga", "NA", "bf", "dd")
dams=c("he","ec", "NA", "fb","NA", "ec", "fb")
gg=border(animal,sire,dams)
    ka = order(-gg)
    oanm=animal[ka]
    osir=sire[ka]
    odam=dams[ka]
    cbind(oanm,osir,odam)
```


Tabular Method

Wright's Coefficient of Relationship

$$
w_{i j}=\frac{\operatorname{Cov}\left(a_{i}, a_{j}\right)}{\left(\operatorname{Var}\left(a_{i}\right) \operatorname{Var}\left(a_{j}\right)\right)^{5}}
$$

$\operatorname{Cov}\left(a_{i}, a_{j}\right)$ from 0 to 2 , numerator relationship.
$\operatorname{Var}\left(a_{i}\right)$ from 1 to 2
$w_{i j}$ from 0 to 1
Coefficient of $\operatorname{Kinship}=\frac{1}{2} \operatorname{Cov}\left(a_{i}, a_{j}\right)$, used in plant breeding. Henderson presented Tabular Method to get $\operatorname{Cov}\left(a_{i}, a_{j}\right)$

Tabular Method

	,-- GA	,--					
FB	GA,FB EC	GA,EC DD	DD,FB HE	DD,HE BF	BF,EC AG		
GA	1	0					
FB	0	1					
EC			1				
DD				1			
HE					1		
BF						1	
AG							1

Tabular Method

	,--	,--	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GA	FB	EC	DD	HE	BF	AG
GA	1	0	$1 / 2$	$3 / 4$	$3 / 8$	$9 / 16$	$17 / 32$
FB	0	1					
EC	$1 / 2$		1				
DD	$3 / 4$			1			
HE	$3 / 8$				1		
BF	$9 / 16$					1	
AG	$17 / 32$						1

Tabular Method

	,--						
	GA	,--					
FB	GA,FB EC	GA,EC DD	DD,FB HE	DD,HE BF	BF,EC AG		
GA	1	0	$1 / 2$	$3 / 4$	$3 / 8$	$9 / 16$	$17 / 32$
FB	0	1	$1 / 2$	$1 / 4$	$5 / 8$	$7 / 16$	$15 / 32$
EC	$1 / 2$	$1 / 2$	1				
DD	$3 / 4$	$1 / 4$		1			
HE	$3 / 8$	$5 / 8$			1		
BF	$9 / 16$	$7 / 16$				1	
AG	$17 / 32$	$15 / 32$					1

Tabular Method

	,-- GA	,-- FB	GA,FB EC	GA,EC DD	DD,FB HE	DD,HE BF	BF,EC AG
GA	1	0	$1 / 2$	$3 / 4$	$3 / 8$	$9 / 16$	$17 / 32$
FB	0	1	$1 / 2$	$1 / 4$	$5 / 8$	$7 / 16$	$15 / 32$
EC	$1 / 2$	$1 / 2$	1	$3 / 4$	$5 / 8$	$11 / 16$	$27 / 32$
DD	$3 / 4$	$1 / 4$	$3 / 4$	$5 / 4$	$3 / 4$	1	$7 / 8$
HE	$3 / 8$	$5 / 8$	$5 / 8$	$3 / 4$	$9 / 8$	$15 / 16$	$25 / 32$
BF	$9 / 16$	$7 / 16$	$11 / 16$	1	$15 / 16$	$11 / 8$	$33 / 32$
AG	$17 / 32$	$15 / 32$	$27 / 32$	$7 / 8$	$25 / 32$	$33 / 32$	$43 / 32$

$$
w_{B F, A G}=\frac{33 / 32}{((11 / 8)(43 / 32))^{5}}=0.75867
$$

```
numer8 = function(sid,did){
N = length(sid)+1
    ss = sid + 1 # increase id's by 1
    dd = did + 1 # no O's in ids
    ss = c(0,ss)
    dd = c(0,dd)
    A = diag(c(1:N))
    A[1, 1]=0
```

$$
\begin{aligned}
& \text { for (i in 2:N) \{ \# row by row } \\
& \text { for (j in i:N) }{ }^{(1)} \text { col within row } \\
& \mathrm{ks}=\mathrm{ss}[\mathrm{j}] \\
& \mathrm{kd}=\mathrm{dd}[j] \\
& \text { if (i == j) \{ } \\
& A[i, j]=1+0.5 * A[k s, k d]\} \text { else } \\
& \text { \{ } A[i, j]=0.5 *(A[i, k s]+A[i, k d] \\
& A[j, i]=A[i, j]\} \\
& \text { \} \} } \\
& \mathrm{ka}=\mathrm{c}(2: \mathrm{N}) \\
& \text { B = A[ka,ka] \# original animals } \\
& \text { return(B) \} }
\end{aligned}
$$

\# letters converted to numbers
\# 1=GA, $2=\mathrm{FB}, 3=\mathrm{EC}, 4=\mathrm{DD}, 5=\mathrm{HE}, 6=\mathrm{BF}, 7=\mathrm{AG}$
sid $=c(0,0,1,1,4,4,6)$
did $=c(0,0,2,3,2,5,3)$
$\mathrm{A}=$ numer8(sid,did)*32

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$
$[1]$,	32	0	16	24	12	18	17
$[2]$,	0	32	16	8	20	14	15
$[3]$,	16	16	32	24	20	22	27
$[4]$,	24	8	24	40	24	32	28
$[5]$,	12	20	20	24	36	30	25
$[6]$,	18	14	22	32	30	44	33
$[7]$,	17	15	27	28	25	33	43

Activity

- Add KK with parents GA and HE
- Apply Tabular Method
- Calculate $w_{G A, K K}$
- Use R function to verify

Inverse of A

- A has order equal to number of animals
- Direct inverse not practical
- Henderson(1975) major discovery

Discovery

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{rrr}
1 & 0 & \frac{1}{2} \\
0 & 1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 1
\end{array}\right) \\
& =\mathbf{L L}^{\prime} \\
& =\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & \left(\frac{1}{2} \cdot\right)^{5}
\end{array}\right)\left(\begin{array}{llr}
1 & 0 & \frac{1}{2} \\
0 & 1 & \frac{1}{2} \\
0 & 0 & \left(\frac{1}{2} \cdot\right)^{5}
\end{array}\right) \\
\mathbf{L} & =\mathbf{T D} \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & 1
\end{array}\right)\left(\begin{array}{llr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \left(\frac{1}{2}\right)^{5}
\end{array}\right) \\
\mathbf{A} & =\mathbf{T}\left(\mathbf{D D ^ { \prime }) \mathbf { T } ^ { \prime } = \mathbf { T D } ^ { 2 } \mathbf { T } ^ { \prime }}\right.
\end{aligned}
$$

More Discovery

$$
\begin{aligned}
\mathbf{A}= & \mathbf{T D}^{2} \mathbf{T}^{\prime}=\mathbf{T B} \mathbf{B}^{\prime} \\
\mathbf{A}^{-1}= & \mathbf{T}^{\prime-1} \mathbf{B}^{-1} \mathbf{T}^{-1} \\
\mathbf{T}^{\prime-1}= & \left(\begin{array}{rrr}
1 & 0 & -\frac{1}{2} \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 1
\end{array}\right) \\
\mathbf{A}^{-1}= & \sum_{i=1}^{n} \mathbf{T}_{i}^{\prime-1} \mathbf{B}_{i i}^{-1} \mathbf{T}_{i}^{-1} \\
= & \left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)(1)\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{lll}
1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) \\
& +\left(\begin{array}{r}
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right)(2)\left(\begin{array}{lll}
-\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right)
\end{aligned}
$$

More Discovery

$$
\begin{aligned}
\mathbf{A}^{-1} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{rrr}
.5 & .5 & -1 \\
.5 & .5 & -1 \\
-1 & -1 & 2
\end{array}\right) \\
& =\left(\begin{array}{rrr}
1.5 & .5 & -1 \\
.5 & 1.5 & -1 \\
-1 & -1 & 2
\end{array}\right)
\end{aligned}
$$

Inverse of \mathbf{A} can be written from list of pedigrees and $\mathbf{B}_{i i}^{-1}$ values. For inbred animals $b_{i i}$ is less than 0.5. Meuwissen and Luo (1996) method for determining inbreeding.

$$
b_{i i}=\left(0.50-0.25 \times\left(F_{s}+F_{d}\right)\right)
$$

F_{s}, F_{d} are inbreeding coefficients of sire and dam of animal i.

Meuwissen and Luo Method

- Process animals in chronological order
- Find a row of \mathbf{T} for animal i
- Find diagonal of \mathbf{B} for animal i
- Multiply to find diagonal of \mathbf{A}
- Subtract 1 to get F_{i}

Earlier Example

Animal	Sire	Dam	F_{i}	$b_{i i}$
GA			0	1
FB			0	1
EC	GA	FB	0	$1 / 2$
DD	GA	EC		

ID vector	T-row	b_{i}
DD	1	$(.5-.25(0+0))=1 / 2$
GA	.5	1
EC	.5	$1 / 2$
GA	.25	1
FB	.25	1

Example continued

ID vector	T-row	b_{i}
DD	1	$(.5-.25(0+0))=1 / 2$
GA	$.5+.25$	1
EC	.5	$1 / 2$
FB	.25	1

$$
\begin{aligned}
a_{D D} & =1^{2}(1 / 2)+(3 / 4)^{2}(1)+(1 / 2)^{2}(1 / 2)+(1 / 4)^{2}(1) \\
& =(8+9+2+1) / 16 \\
& =1+(1 / 4) \\
F_{D D} & =1 / 4
\end{aligned}
$$

Next animal, HE

ID vector	T-row	b_{i}
HE	1	$(.5-.25(.25+0))=7 / 16$
DD	.5	$1 / 2$
FB	.5	1
GA	.25	1
EC	.25	$1 / 2$
GA	.125	1
FB	.125	1

Next animal, HE

ID vector	T-row	b_{i}
HE	1	$7 / 16$
DD	.5	$1 / 2$
FB	$5 / 8$	1
GA	$3 / 8$	1
EC	.25	$1 / 2$

$$
\begin{aligned}
a_{H E} & =1^{2}(7 / 16)+(1 / 2)^{2}(1 / 2)+(5 / 8)^{2}(1)+(3 / 8)^{2}(1)+(1 / 4)^{2}(1 / 2) \\
& =(28+8+25+9+2) / 64 \\
& =1+(1 / 8) \\
F_{H E} & =1 / 8
\end{aligned}
$$

Earlier Example

Animal	Sire	Dam	F_{i}	$b_{i i}$
GA			0	1
FB			0	1
EC	GA	FB	0	$1 / 2$
DD	GA	EC	$1 / 4$	$1 / 2$
HE	DD	FB	$1 / 8$	$7 / 16$
BF	DD	HE	$3 / 8$	$13 / 32$
AG	BF	EC	$11 / 32$	$13 / 32$

Writing \mathbf{A}^{-1}

Henderson's Rules

Let $\delta=1 / b_{i i}$, then add

	Animal	$\underline{\text { Sire }}$	$\underline{\text { Dam }}$
Animal	δ	$-.5 \delta$	$-.5 \delta$
Sire	$-.5 \delta$	$.25 \delta$	$.25 \delta$
Dam	$-.5 \delta$	$.25 \delta$	$.25 \delta$

Writing \mathbf{A}^{-1}

	,---	,--	GA,FB	GA,EC			
	GA	FB	DC,FB	DD	DD,HE	BF,EC	
HE	BF	AG					
GA							
FB							
EC							
DD							
HE							
BF							
AG							

Animal GA, $b_{i i}=1$ so $\delta=1$, parents unknown

Writing \mathbf{A}^{-1}

	,,--	,--	GA,FB				
GA	FB	GA,EC EC	DD,FB DE	DD,HE BF	BF,EC AG		
GA	1						
FB							
EC							
DD							
HE							
BF							
AG							

Animal FB, $b_{i i}=1$ so $\delta=1$, parents unknown

Writing \mathbf{A}^{-1}

	,-- GA	,- FB	GA,FB EC	GA,EC DD	DD,FB HE	DD,HE BF	BF,EC AG
GA	1						
FB		1					
EC							
DD							
HE							
BF							
AG							

Animal EC, $b_{i i}=1 / 2$ so $\delta=2$, parents known

Writing \mathbf{A}^{-1}

	,---	,-- GA	GA,FB FB	GA,EC DD	DD,FB HE	DD,HE BF	BF,EC AG
GA	1.5	.5	-1				
FB	.5	1.5	-1				
EC	-1	-1	2				
DD							
HE							
BF							
AG							

Animal DD, $b_{i i}=1 / 2$ so $\delta=2$, parents known

Writing \mathbf{A}^{-1}

	,--						
	GA	FB	GA,FB EC	GA,EC DD	DD,FB HE	DD,HE BF	BF,EC AG
GA	2	.5	-.5	-1			
FB	.5	1.5	-1				
EC	-.5	-1	2.5	-1			
DD	-1		-1	2			
HE							
BF							
AG							

Animal HE, $b_{i i}=7 / 16$ so $\delta=16 / 7$, parents known

Writing \mathbf{A}^{-1}

	,--	,--	GA,FB				
	GA	FB	EA,EC				
EC	DD	DD HE	DD,HE BF	BF,EC AG			
GA	2	.5	-.5	-1			
FB	.5	$1.5+4 / 7$	-1	$4 / 7$	$-8 / 7$		
EC	-.5	-1	2.5	-1			
DD	-1	$4 / 7$	-1	$2+4 / 7$	$-8 / 7$		
HE		$-8 / 7$		$-8 / 7$	$16 / 7$		
BF							
AG							

Animal BF, $b_{i i}=13 / 32$ so $\delta=32 / 13$, parents known

Writing \mathbf{A}^{-1}

	,--	,--					
GA	FB	GA,FB EC	GA,EC DD	DD,FB HE	DD,HE BF	BF,EC AG	
GA	2	.5	-.5	-1			
FB	.5	$1.5+4 / 7$	-1	$4 / 7$	$-8 / 7$		
EC	-.5	-1	2.5	-1			
DD	-1	$4 / 7$	-1	$2+\frac{4}{7}+\frac{8}{13}$	$-\frac{8}{7}+\frac{8}{13}$	$-16 / 13$	
HE		$-8 / 7$		$-\frac{8}{7}+\frac{8}{13}$	$\frac{16}{7}+\frac{8}{13}$	$-16 / 13$	
BF				$-16 / 32$	$-16 / 13$	$32 / 13$	
AG							

Animal AG, $b_{i i}=13 / 32$ so $\delta=32 / 13$, parents known

Writing \mathbf{A}^{-1}

	,--	,--	GA,FB	GA,EC	DD,FB	DD,HE	BF,EC
	GA	FB	EC	DD	HE	BF	AG
GA	2	.5	-.5	-1			
FB	.5	$1.5+\frac{4}{7}$	-1	$\frac{4}{7}$	$-\frac{8}{7}$		
EC	-.5	-1	$2.5+\frac{8}{13}$	-1		$\frac{8}{13}$	$-\frac{16}{13}$
DD	-1	$\frac{4}{7}$	-1	$2+\frac{4}{7}+\frac{8}{13}$	$-\frac{8}{7}+\frac{8}{13}$	$-\frac{16}{13}$	
HE		$-\frac{8}{7}$		$-\frac{8}{7}+\frac{8}{13}$	$\frac{16}{7}+\frac{8}{13}$	$-\frac{16}{13}$	
BF			$\frac{8}{13}$	$-\frac{16}{32}$	$-\frac{16}{13}$	$\frac{40}{13}$	$-\frac{16}{13}$
AG			$-\frac{16}{13}$			$-\frac{16}{13}$	$\frac{32}{13}$

DONE! Fill in empty spaces with 0.

Bill's Routines

C language routines "wrapped" into R functions.

```
xpdinit(nam) # initialize pedigree
xpdadd(sire,dam) # add a new animal
xpdd(animal) # returns bi value
xpdf(animal) # returns f value
xpdfree() # frees up memory after
all inbreeding computed
```

zzlib = file.choose() \# find rclib.dll
dyn.load(zzlib)
zbill = file.choose() \# find Bills.R
source(zbill)

Compute Inbreeding

```
animals numbered in chronological order, 1 to nam
sid \# a string of sire numbers, 1 to nam
did \# a string of dam numbers, 1 to nam
xpdint(nam) \# initialize functions
inbc \(=\operatorname{rep}(0, n a m)\)
inbb \(=\operatorname{rep}(0, n a m)\)
for (i in 1:nam) \{
    inbc[i] = xpdadd(sid[i],did[i])
    inbb[i] = xpdd(i)
    \}
```


A-inverse Function

$$
\text { AI }=\text { AINV (sid,did,inbb) }
$$

$$
\begin{aligned}
& \text { AINV }=\text { function(sid,did,bi) \{ } \\
& \text { rules }=\text { matrix }(\text { data }=c(1,-.5,-.5,-.5,0.25,0.25,-.5, .25, .2 \text { ! } \\
& \text { byrow=TRUE, nrow=3) } \\
& \text { nam }=\text { length(sid); } n p=n a m+1 \\
& \text { ss = sid+1; dd = did + } 1 \\
& \text { LAI = matrix (data=c (0), nrow=np, ncol=np) } \\
& \text { for (i in 1:nam) \{ } \\
& i p=i+1 ; \quad X=1 / b i[i] \\
& \mathrm{k}=\mathrm{cbind}(\mathrm{ip}, \mathrm{ss}[\mathrm{i}], \mathrm{dd}[\mathrm{i}]) \\
& \operatorname{LAI}[k, k]=\operatorname{LAI}[k, k]+r u l e s * X \\
& \text { \} } \\
& \mathrm{k}=\mathrm{c}(2: \mathrm{np}) ; \quad \mathrm{C}=\operatorname{LAI}[\mathrm{k}, \mathrm{k}] \\
& \text { return (C) \} }
\end{aligned}
$$

Sire-MGS Relationships

What would be the rules if

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 0 & \frac{1}{2} \\
0 & 1 & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{4} & 1
\end{array}\right)
$$

- Apply Cholesky decomposition
- Form $\mathbf{T D}^{2} \mathbf{T}^{\prime}$
- Invert T
- Deduce the rules. Try it.

Sire-MGS

Henderson's Rules

Let $\delta=16 / 11$, then if both ancestors known add

	$\underline{\text { Animal }}$	$\underline{\text { Sire }}$	$\underline{\text { MGS }}$
Animal	δ	$-.5 \delta$	$-.25 \delta$
Sire	$-.5 \delta$	$.25 \delta$	$.125 \delta$
MGS	$-.25 \delta$	$.125 \delta$	$.0625 \delta$

If MGS unknown, $\delta=4 / 3$.
If Sire unknown, $\delta=16 / 15$.

Sire Models

$$
y_{i j k \ldots}=\text { Fixed }+ \text { Random }+s_{k}+e_{i j k \ldots} \ldots
$$

- Genetic part through sire, records on progeny, half-sibs.
- Each progeny assumed to have one record, first lactations.
- Each progeny from a different, random dam, equal genetic quality.
- Progeny distributed randomly across other effects in the model.
- Sire estimates were Transmitting Abilities, ETA.
- Sires related, A based on Sire-MGS relationships, no inbreeding.
- 1970's

Sire-MGS Models

$$
y_{i j k \ldots}=\text { Fixed }+ \text { Random }+s_{k}+.5 s_{l}+e_{i j k \ldots}
$$

- Dams assumed to be random female progeny of the MGS.
- All progeny of a sire are half-sibs.
- One record per progeny.
- One progeny per dam, dams from different genetic levels as indicated by MGS.
- ETA obtained.
- A based on Sire-MGS relationships, no inbreeding.
- Progeny distributed randomly across other effects in the model.

Sire-Dam Models

$$
y_{i j k \ldots}=\text { Fixed }+ \text { Random }+s_{k}+d_{l}+e_{i j k \ldots}
$$

- Dams can have more than one progeny, full-sibs allowed.
- Dams can have different genetic potential.
- Dams not randomly mated to sires.
- Dams can be mated to different sires.
- Dam effects might include maternal effects.
- One record per progeny.
- ETA obtained.
- Progeny distributed randomly across other effects in the model.
- A may be based on Sire-Dam relationships or Sire-MGS relationships, no inbreeding.

Animal Models

$$
y_{i j k \ldots}=\text { Fixed }+ \text { Random }+a_{k}+p e_{l}+e_{i j k \ldots}
$$

- One or more records per animal, but all animals must have a first record.
- PE effects if more than one record included.
- A based on Sires-Dams, takes into account non-random matings, all additive relationships and inbreeding.
- Animals are random progeny from sire-dam matings, i.e. not selected.
- Animals distributed randomly among other factors in the model.
- EBV obtained, the combined additive effect of all loci in the genome.

