R Language

LRS

University of Guelph
July-Aug 2012

Every command is an object and every object has some parameters that need to be given to it. Thus, the basic structure is
command (arg1, arg1, ...)

Data

How to get data into R?
(1) Enter the data manually.
(2) Read data from a file.
(3) Have R create your data.

Enter Data

```
A = matrix(data=c(3,-1,-2,4),byrow=TRUE,ncol=2)
A =( rrrer
ages = c(23, 14, 38, 54, 17)
mean(ages)
var(ages)
N = length(ages)
average = sum(ages)/N
yy = sum(ages*ages)
vage = (yy - average*sum(ages))/(N-1)
```


Matrix multiplication

$$
\begin{aligned}
& A=\operatorname{matrix}(\text { data }=c(3,-1,-2,4), \text { byrow=TRUE, ncol=2) } \\
& B=\operatorname{matrix}(\operatorname{data}=c(1,-1,3,1,1,-1), \text { byrow=TRUE }, \text { ncol }=3) \\
& M=A \% * \% B
\end{aligned}
$$

M

Enter matrices \mathbf{A} and \mathbf{B}. A times \mathbf{B} is conformable, but not \mathbf{B} times \mathbf{A}. Matrix multiplication in R is given by $\% * \%$. What happens if you use *
$\mathrm{A}=$ matrix (data=c $(3,-1,-2,4)$, byrow=TRUE, ncol=2)
B = matrix (data=c ($1,-1,3,1,1,-1$), byrow=TRUE, ncol=3)
$\mathrm{M}=\mathrm{A} \% \mathrm{x} \% \mathrm{~B} \quad \#$ Note the difference, small x
M

$$
\begin{gathered}
\mathbf{M}=\left(\begin{array}{rrrrrr}
3 & -3 & 9 & -1 & 1 & -3 \\
3 & 3 & -3 & -1 & -1 & 1 \\
-2 & 2 & -6 & 4 & -4 & 12 \\
-2 & -2 & 2 & 4 & 4 & -4
\end{array}\right) \\
\mathbf{M}=\left(\begin{array}{ll}
a_{11} \mathbf{B} & a_{12} \mathbf{B} \\
a_{21} \mathbf{B} & a_{22} \mathbf{B}
\end{array}\right)
\end{gathered}
$$

Direct Sum

```
block= function( ... ) \{
    argv = list( . . . )
    i \(=0\)
    for ( a in argv ) \{
        \(\mathrm{m}=\mathrm{as} . \operatorname{matrix}(\mathrm{a})\)
        if(i == 0)
        rmat = m
    else
        \{
            \(\mathrm{nr}=\operatorname{dim}(\mathrm{m})[1]\)
            \(\mathrm{nc}=\operatorname{dim}(\mathrm{m})[2]\)
            \(\mathrm{aa}=\operatorname{cbind}(\) matrix \((0, \mathrm{nr}, \operatorname{dim}(r m a t)[2]), \mathrm{m})\)
            rmat \(=\) cbind(rmat, matrix(0,dim(rmat)[1],nc))
            rmat \(=\) rbind (rmat,aa)
        \}
    i \(=i+1\)
    \}
    rmat
    \}
```

$\mathrm{A}=$ matrix $($ data $=c(3,-1,-2,4)$, byrow=TRUE, ncol=2)
$B=$ matrix (data=c $(1,-1,3,1,1,-1)$, byrow=TRUE, ncol=3)
M = block(A,B)

$$
\mathbf{M}=\left(\begin{array}{rrrrr}
3 & -1 & 0 & 0 & 0 \\
-2 & 4 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 3 \\
0 & 0 & 1 & 1 & -1
\end{array}\right)
$$

Joining Strings

$$
\begin{aligned}
& S A=c(23,14,38,54,17) \\
& S B=c(1,-1,1,-1,1) \\
& M 1=\operatorname{cbind}(S A, S B) \quad \# \text { order } 5 \times 2 \\
& M 2=\operatorname{rbind}(S A, S B) \quad \# \text { order } 2 \times 5
\end{aligned}
$$

Arguments going into rbind and cbind must have the same length.

Subsets, Partitions

A \# matrix of order 200 x 53
\# keep only rows where first element
\# is greater than 10
$B=A[A[, 1]>10$,
\# keep rows 4,5, and 9, and columns
\# 21 to 30
$\mathrm{kr}=\mathrm{c}(4,5,9)$
$\mathrm{kc}=\mathrm{c}(21: 30)$
$\mathrm{C}=\mathrm{A}[\mathrm{kr}, \mathrm{kc}]$

Data Files

```
zdat = file.choose() # bodytrt.d
bods = read.table(file=zdat,header=FALSE,
    col.names=c("height", "fore", "foot", "gender",
    "waist","head","GPA") )
# bods is a data frame, matrix
summary(bods)
mean( bods$GPA )
N = nrow(bods) # number of records in bods
```


Matrix Inversion

A
$\operatorname{det}(\mathrm{A})$
AI = solve(A)
help("solve")
C = AI \%*\% A \# identity?

Generalized Inverse

```
library(MASS) # needed
det(A) # is zero
G = ginv(A) # Moore-Penrose inverse
AG = A %*% G # not an identity
AGA = AG %*% A # should equal A
```

"ginv" sometimes gives rounding errors, and thus, problems with solutions to equations, always check the results.

Rank

```
A
    # singular matrix
G = ginv(A)
AG = A %*% G
H = AG %*% AG # idempotent H = AG
rnk = sum(diag(H)) # equals rank of A
                            # sum(diag( )) is trace of matrix
# diag - extracts diagonals of matrix into a string
# OR creates a diagonal matrix from a string
```


User Functions

Users can make their own functions, "Irscrips.R"

```
M \# matrix to be reduced
ELMO = function(M,mr,mc,cons)\{
    \(\mathrm{k}=\) nrow \((\mathrm{M})\)
    OM = diag (rep \((1, k))\) \# create identity
    OM [mr,mc] = cons
    \(\mathrm{X}=\mathrm{OM} \% * \% \mathrm{M}\)
    return(X) \}
```

What happens if " $m r$ " is greater than " k "

Ordering a string of elements

```
S = c( 3, 6, -1, 2, 11, 4, 5)
ka = order(S) # ascending
kd = order(-S) # descending
ka
kd
S [ka]
S[kd]
```

